forked from moskomule/homura
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10.py
55 lines (46 loc) · 1.97 KB
/
cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import hydra
import torch
import torch.nn.functional as F
from homura import optim, lr_scheduler, callbacks, reporters, trainers
from homura.vision.data import vision_loaders
from homura.vision.models.classification import resnet20, wrn28_10
@hydra.main('config/cifar10.yaml')
def main(cfg):
model = {"resnet20": resnet20,
"wrn28_10": wrn28_10}[cfg.model](num_classes=10)
weight_decay = {"resnet20": 1e-4,
"wrn28_10": 5e-4}[cfg.model]
lr_decay = {"resnet20": 0.1,
"wrn28_10": 0.2}[cfg.model]
train_loader, test_loader = vision_loaders("cifar10", cfg.batch_size)
optimizer = None if cfg.bn_no_wd else optim.SGD(lr=1e-1, momentum=0.9, weight_decay=weight_decay)
scheduler = lr_scheduler.MultiStepLR([100, 150], gamma=lr_decay)
tq = reporters.TQDMReporter(range(cfg.epochs), verb=True)
c = [callbacks.AccuracyCallback(),
callbacks.LossCallback(),
reporters.IOReporter("."),
reporters.TensorboardReporter("."),
callbacks.WeightSave("."),
tq]
if cfg.bn_no_wd:
def set_optimizer(trainer):
bn_params = []
non_bn_parameters = []
for name, p in trainer.model.named_parameters():
if "bn" in name:
bn_params.append(p)
else:
non_bn_parameters.append(p)
optim_params = [
{"params": bn_params, "weight_decay": 0},
{"params": non_bn_parameters, "weight_decay": weight_decay},
]
trainer.optimizer = torch.optim.SGD(optim_params, lr=1e-1, momentum=0.9)
trainers.SupervisedTrainer.set_optimizer = set_optimizer
with trainers.SupervisedTrainer(model, optimizer, F.cross_entropy, callbacks=c,
scheduler=scheduler) as trainer:
for _ in tq:
trainer.train(train_loader)
trainer.test(test_loader)
if __name__ == '__main__':
main()