<!DOCTYPE html>
<html>
<head>
<style type="text/css">
.knitr .inline {
  background-color: #f7f7f7;
  border:solid 1px #B0B0B0;
}
.error {
	font-weight: bold;
	color: #FF0000;
}
.warning {
	font-weight: bold;
}
.message {
	font-style: italic;
}
.source, .output, .warning, .error, .message {
	padding: 0 1em;
  border:solid 1px #F7F7F7;
}
.source {
  background-color: #f5f5f5;
}
.rimage .left {
  text-align: left;
}
.rimage .right {
  text-align: right;
}
.rimage .center {
  text-align: center;
}
.hl.num {
  color: #AF0F91;
}
.hl.str {
  color: #317ECC;
}
.hl.com {
  color: #AD95AF;
  font-style: italic;
}
.hl.opt {
  color: #000000;
}
.hl.std {
  color: #585858;
}
.hl.kwa {
  color: #295F94;
  font-weight: bold;
}
.hl.kwb {
  color: #B05A65;
}
.hl.kwc {
  color: #55aa55;
}
.hl.kwd {
  color: #BC5A65;
  font-weight: bold;
}
</style>
  <script src="https://yihui.name/media/js/center-images.js"></script>
  <title>A Report Generated by knitr</title>
</head>
<body>

  <p>This report is automatically generated with the R
    package <a href="https://yihui.name/knitr/"><strong>knitr</strong></a>
    (version <code class="knitr inline">1.20</code>)
    .</p>

<div class="chunk" id="auto-report"><div class="rcode"><div class="source"><pre class="knitr r"><span class="hl kwd">library</span><span class="hl std">(lmerTest)</span>
</pre></div>
<div class="message"><pre class="knitr r">## Loading required package: lme4
</pre></div>
<div class="message"><pre class="knitr r">## Loading required package: Matrix
</pre></div>
<div class="message"><pre class="knitr r">## 
## Attaching package: 'lmerTest'
</pre></div>
<div class="message"><pre class="knitr r">## The following object is masked from 'package:lme4':
## 
##     lmer
</pre></div>
<div class="message"><pre class="knitr r">## The following object is masked from 'package:stats':
## 
##     step
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl kwd">library</span><span class="hl std">(lsmeans)</span>
</pre></div>
<div class="message"><pre class="knitr r">## The 'lsmeans' package is being deprecated.
## Users are encouraged to switch to 'emmeans'.
## See help('transition') for more information, including how
## to convert 'lsmeans' objects and scripts to work with 'emmeans'.
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl kwd">library</span><span class="hl std">(scales)</span>
<span class="hl kwd">library</span><span class="hl std">(ggrepel)</span>
</pre></div>
<div class="message"><pre class="knitr r">## Loading required package: ggplot2
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl kwd">library</span><span class="hl std">(readr)</span>
</pre></div>
<div class="message"><pre class="knitr r">## 
## Attaching package: 'readr'
</pre></div>
<div class="message"><pre class="knitr r">## The following object is masked from 'package:scales':
## 
##     col_factor
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl kwd">library</span><span class="hl std">(magrittr)</span>
<span class="hl kwd">library</span><span class="hl std">(dplyr)</span>
</pre></div>
<div class="warning"><pre class="knitr r">## Warning: package 'dplyr' was built under R version 3.5.2
</pre></div>
<div class="message"><pre class="knitr r">## 
## Attaching package: 'dplyr'
</pre></div>
<div class="message"><pre class="knitr r">## The following objects are masked from 'package:stats':
## 
##     filter, lag
</pre></div>
<div class="message"><pre class="knitr r">## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl kwd">library</span><span class="hl std">(tidyr)</span>
</pre></div>
<div class="message"><pre class="knitr r">## 
## Attaching package: 'tidyr'
</pre></div>
<div class="message"><pre class="knitr r">## The following object is masked from 'package:magrittr':
## 
##     extract
</pre></div>
<div class="message"><pre class="knitr r">## The following object is masked from 'package:Matrix':
## 
##     expand
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl kwd">library</span><span class="hl std">(ggplot2)</span>
<span class="hl kwd">library</span><span class="hl std">(xtable)</span>
<span class="hl kwd">library</span><span class="hl std">(emmeans)</span>
</pre></div>
<div class="warning"><pre class="knitr r">## Warning: package 'emmeans' was built under R version 3.5.2
</pre></div>
<div class="message"><pre class="knitr r">## 
## Attaching package: 'emmeans'
</pre></div>
<div class="message"><pre class="knitr r">## The following objects are masked from 'package:lsmeans':
## 
##     .all.vars, .aovlist.dffun, .diag, .get.offset, .my.vcov, add_grouping,
##     as.glht, contrast, get.lsm.option, lsm, lsm.options, lsmeans, lsmip, lsmobj,
##     lstrends, make.tran, pmm, pmmeans, pmmip, pmmobj, pmtrends, regrid, test
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl kwd">library</span><span class="hl std">(lsr)</span>
<span class="hl kwd">theme_set</span><span class="hl std">(</span><span class="hl kwd">theme_bw</span><span class="hl std">())</span>
<span class="hl kwd">emm_options</span><span class="hl std">(</span><span class="hl kwc">pbkrtest.limit</span> <span class="hl std">=</span> <span class="hl num">12500</span><span class="hl std">)</span>
<span class="hl kwd">emm_options</span><span class="hl std">(</span><span class="hl kwc">lmerTest.limit</span> <span class="hl std">=</span> <span class="hl num">12500</span><span class="hl std">)</span>
<span class="hl std">my_pallete</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl str">'#92c5de'</span><span class="hl std">,</span><span class="hl str">'#0571b0'</span><span class="hl std">,</span><span class="hl str">'#f4a582'</span><span class="hl std">,</span><span class="hl str">'#ca0020'</span><span class="hl std">,</span><span class="hl str">'#bababa'</span><span class="hl std">)</span>

<span class="hl kwd">source</span><span class="hl std">(</span><span class="hl str">'lib.R'</span><span class="hl std">)</span>
</pre></div>
<div class="message"><pre class="knitr r">## 
## Attaching package: 'ggridges'
</pre></div>
<div class="message"><pre class="knitr r">## The following object is masked from 'package:ggplot2':
## 
##     scale_discrete_manual
</pre></div>
<div class="message"><pre class="knitr r">## ── Attaching packages ───────────────────────────────────────────────── tidyverse 1.2.1 ──
</pre></div>
<div class="message"><pre class="knitr r">## ✔ tibble  2.1.3     ✔ stringr 1.3.1
## ✔ purrr   0.2.5     ✔ forcats 0.3.0
</pre></div>
<div class="warning"><pre class="knitr r">## Warning: package 'tibble' was built under R version 3.5.2
</pre></div>
<div class="message"><pre class="knitr r">## ── Conflicts ──────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ readr::col_factor()               masks scales::col_factor()
## ✖ purrr::discard()                  masks scales::discard()
## ✖ tidyr::expand()                   masks Matrix::expand()
## ✖ tidyr::extract()                  masks magrittr::extract()
## ✖ dplyr::filter()                   masks stats::filter()
## ✖ dplyr::lag()                      masks stats::lag()
## ✖ ggridges::scale_discrete_manual() masks ggplot2::scale_discrete_manual()
## ✖ purrr::set_names()                masks magrittr::set_names()
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl kwa">if</span> <span class="hl std">(</span><span class="hl opt">!</span><span class="hl kwd">dir.exists</span><span class="hl std">(</span><span class="hl str">'figures/exp3'</span><span class="hl std">))</span>
   <span class="hl kwd">dir.create</span><span class="hl std">(</span><span class="hl str">'figures/exp3'</span><span class="hl std">,</span> <span class="hl kwc">recursive</span> <span class="hl std">= T)</span>

<span class="hl com"># read data</span>
<span class="hl std">woa_responses</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">read_csv</span><span class="hl std">(</span><span class="hl str">&quot;data/exp3/data.csv&quot;</span><span class="hl std">)</span>
</pre></div>
<div class="message"><pre class="knitr r">## Parsed with column specification:
## cols(
##   worker_id = col_character(),
##   condition = col_character(),
##   q_id = col_integer(),
##   model_pred = col_double(),
##   actual_price = col_double(),
##   user_init_pred = col_double(),
##   final_pred = col_double(),
##   step1_time = col_integer(),
##   step2_time = col_integer()
## )
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># recode conditions and compute outcome measures</span>
<span class="hl std">woa_responses</span> <span class="hl kwb">&lt;-</span> <span class="hl std">woa_responses</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">condition</span> <span class="hl std">=</span> <span class="hl kwd">recode_factor</span><span class="hl std">(</span><span class="hl kwd">as.factor</span><span class="hl std">(condition),</span>
                                   <span class="hl str">&quot;C1&quot;</span> <span class="hl std">=</span> <span class="hl str">&quot;CLEAR-2&quot;</span><span class="hl std">,</span>
                                   <span class="hl str">&quot;C3&quot;</span> <span class="hl std">=</span> <span class="hl str">&quot;CLEAR-8&quot;</span><span class="hl std">,</span>
                                   <span class="hl str">&quot;C0&quot;</span> <span class="hl std">=</span> <span class="hl str">&quot;BB-2&quot;</span><span class="hl std">,</span>
                                   <span class="hl str">&quot;C2&quot;</span> <span class="hl std">=</span> <span class="hl str">&quot;BB-8&quot;</span><span class="hl std">,</span>
                                   <span class="hl str">&quot;C4&quot;</span> <span class="hl std">=</span> <span class="hl str">&quot;EXPERT&quot;</span><span class="hl std">))</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">pred_err</span> <span class="hl std">=</span> <span class="hl kwd">abs</span><span class="hl std">(final_pred</span> <span class="hl opt">-</span> <span class="hl std">actual_price),</span>
         <span class="hl kwc">deviation</span> <span class="hl std">=</span> <span class="hl kwd">abs</span><span class="hl std">(final_pred</span> <span class="hl opt">-</span> <span class="hl std">model_pred),</span>
         <span class="hl kwc">woa</span> <span class="hl std">=</span> <span class="hl kwd">abs</span><span class="hl std">(final_pred</span> <span class="hl opt">-</span> <span class="hl std">user_init_pred)</span> <span class="hl opt">/</span> <span class="hl kwd">abs</span><span class="hl std">(model_pred</span> <span class="hl opt">-</span> <span class="hl std">user_init_pred))</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">ungroup</span><span class="hl std">()</span>


<span class="hl com">#########################################</span>
<span class="hl com"># histograms</span>
<span class="hl com">#########################################</span>
<span class="hl com"># users' final prediction</span>
<span class="hl std">breaks</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">seq</span><span class="hl std">(</span><span class="hl num">0</span><span class="hl std">,</span><span class="hl num">3</span><span class="hl std">,</span><span class="hl num">1</span><span class="hl std">)</span>
<span class="hl std">responses1</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">filter</span><span class="hl std">(woa_responses, q_id</span> <span class="hl opt">&lt;</span> <span class="hl num">6</span><span class="hl std">)</span>
<span class="hl std">responses1</span><span class="hl opt">$</span><span class="hl std">q_id</span> <span class="hl kwb">&lt;-</span> <span class="hl std">responses1</span><span class="hl opt">$</span><span class="hl std">q_id</span> <span class="hl opt">+</span> <span class="hl num">1</span>
<span class="hl std">responses2</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">filter</span><span class="hl std">(woa_responses, q_id</span> <span class="hl opt">&gt;=</span> <span class="hl num">6</span><span class="hl std">)</span>
<span class="hl std">responses2</span><span class="hl opt">$</span><span class="hl std">q_id</span> <span class="hl kwb">&lt;-</span> <span class="hl std">responses2</span><span class="hl opt">$</span><span class="hl std">q_id</span> <span class="hl opt">+</span> <span class="hl num">1</span>

<span class="hl com"># replace -1 for actual price of apartment 12 (synthetic) with NA</span>
<span class="hl std">responses1</span><span class="hl opt">$</span><span class="hl std">actual_price</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">replace</span><span class="hl std">(responses1</span><span class="hl opt">$</span><span class="hl std">actual_price,</span> <span class="hl kwd">which</span><span class="hl std">(responses1</span><span class="hl opt">$</span><span class="hl std">actual_price</span> <span class="hl opt">== -</span><span class="hl num">1</span><span class="hl std">),</span> <span class="hl num">NA</span><span class="hl std">)</span>
<span class="hl std">responses2</span><span class="hl opt">$</span><span class="hl std">actual_price</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">replace</span><span class="hl std">(responses2</span><span class="hl opt">$</span><span class="hl std">actual_price,</span> <span class="hl kwd">which</span><span class="hl std">(responses2</span><span class="hl opt">$</span><span class="hl std">actual_price</span> <span class="hl opt">== -</span><span class="hl num">1</span><span class="hl std">),</span> <span class="hl num">NA</span><span class="hl std">)</span>

<span class="hl com"># shift plot</span>
<span class="hl std">plot_shifts</span> <span class="hl kwb">&lt;-</span> <span class="hl kwa">function</span><span class="hl std">(</span><span class="hl kwc">response_data</span><span class="hl std">){</span>
  <span class="hl com"># summary stats</span>
  <span class="hl std">plot_data</span> <span class="hl kwb">&lt;-</span> <span class="hl std">response_data</span> <span class="hl opt">%&gt;%</span>
    <span class="hl kwd">group_by</span><span class="hl std">(condition, q_id)</span> <span class="hl opt">%&gt;%</span>
    <span class="hl kwd">summarize</span><span class="hl std">(</span><span class="hl kwc">mean_user_init_pred</span> <span class="hl std">=</span> <span class="hl kwd">mean</span><span class="hl std">(user_init_pred),</span>
              <span class="hl kwc">mean_final_pred</span> <span class="hl std">=</span> <span class="hl kwd">mean</span><span class="hl std">(final_pred))</span> <span class="hl opt">%&gt;%</span>
    <span class="hl kwd">group_by</span><span class="hl std">(q_id)</span> <span class="hl opt">%&gt;%</span>
    <span class="hl kwd">arrange</span><span class="hl std">(q_id, condition)</span> <span class="hl opt">%&gt;%</span>
    <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">y</span> <span class="hl std">=</span> <span class="hl num">1</span><span class="hl opt">:</span><span class="hl kwd">n</span><span class="hl std">())</span>

    <span class="hl std">breaks</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">seq</span><span class="hl std">(</span><span class="hl num">0</span><span class="hl std">,</span><span class="hl num">3</span><span class="hl std">,</span><span class="hl num">1</span><span class="hl std">)</span>
    <span class="hl std">response_data</span> <span class="hl opt">%&gt;%</span>
    <span class="hl kwd">group_by</span><span class="hl std">(condition, q_id)</span> <span class="hl opt">%&gt;%</span>
    <span class="hl kwd">filter</span><span class="hl std">(user_init_pred</span> <span class="hl opt">&gt;=</span> <span class="hl kwd">quantile</span><span class="hl std">(user_init_pred,</span> <span class="hl num">0.05</span><span class="hl std">),</span>
           <span class="hl std">user_init_pred</span> <span class="hl opt">&lt;=</span> <span class="hl kwd">quantile</span><span class="hl std">(user_init_pred,</span> <span class="hl num">0.95</span><span class="hl std">),</span>
           <span class="hl std">final_pred</span> <span class="hl opt">&gt;=</span> <span class="hl kwd">quantile</span><span class="hl std">(final_pred,</span> <span class="hl num">0.05</span><span class="hl std">),</span>
           <span class="hl std">final_pred</span> <span class="hl opt">&lt;=</span> <span class="hl kwd">quantile</span><span class="hl std">(final_pred,</span> <span class="hl num">0.95</span><span class="hl std">))</span> <span class="hl opt">%&gt;%</span>
    <span class="hl kwd">ungroup</span><span class="hl std">()</span> <span class="hl opt">%&gt;%</span>
    <span class="hl kwd">ggplot</span><span class="hl std">(</span><span class="hl kwd">aes</span><span class="hl std">(</span><span class="hl kwc">x</span> <span class="hl std">= final_pred,</span> <span class="hl kwc">fill</span> <span class="hl std">= condition,</span> <span class="hl kwc">color</span> <span class="hl std">= condition))</span> <span class="hl opt">+</span>
    <span class="hl kwd">geom_histogram</span><span class="hl std">(</span><span class="hl kwd">aes</span><span class="hl std">(</span><span class="hl kwc">x</span> <span class="hl std">= user_init_pred),</span> <span class="hl kwc">alpha</span> <span class="hl std">=</span> <span class="hl num">0.2</span><span class="hl std">,</span> <span class="hl kwc">linetype</span> <span class="hl std">=</span> <span class="hl str">'dotted'</span><span class="hl std">,</span> <span class="hl kwc">binwidth</span> <span class="hl std">=</span> <span class="hl num">0.1</span><span class="hl std">)</span> <span class="hl opt">+</span>
    <span class="hl kwd">geom_histogram</span><span class="hl std">(</span><span class="hl kwc">alpha</span> <span class="hl std">=</span> <span class="hl num">0.5</span><span class="hl std">,</span> <span class="hl kwc">binwidth</span> <span class="hl std">=</span> <span class="hl num">0.1</span><span class="hl std">)</span> <span class="hl opt">+</span>
    <span class="hl kwd">geom_point</span><span class="hl std">(</span><span class="hl kwc">data</span> <span class="hl std">= plot_data,</span> <span class="hl kwd">aes</span><span class="hl std">(</span><span class="hl kwc">x</span> <span class="hl std">= mean_final_pred,</span> <span class="hl kwc">y</span> <span class="hl std">=</span> <span class="hl num">80</span><span class="hl std">),</span> <span class="hl kwc">shape</span> <span class="hl std">=</span> <span class="hl num">20</span><span class="hl std">)</span> <span class="hl opt">+</span>
    <span class="hl kwd">geom_point</span><span class="hl std">(</span><span class="hl kwc">data</span> <span class="hl std">= plot_data,</span> <span class="hl kwd">aes</span><span class="hl std">(</span><span class="hl kwc">x</span> <span class="hl std">= mean_user_init_pred,</span> <span class="hl kwc">y</span> <span class="hl std">=</span> <span class="hl num">80</span><span class="hl std">),</span> <span class="hl kwc">shape</span> <span class="hl std">=</span> <span class="hl num">1</span><span class="hl std">)</span> <span class="hl opt">+</span>
    <span class="hl kwd">geom_segment</span><span class="hl std">(</span><span class="hl kwc">data</span> <span class="hl std">= plot_data,</span>
                 <span class="hl kwd">aes</span><span class="hl std">(</span><span class="hl kwc">x</span> <span class="hl std">= mean_user_init_pred,</span> <span class="hl kwc">y</span> <span class="hl std">=</span> <span class="hl num">95</span><span class="hl std">,</span>
                     <span class="hl kwc">xend</span> <span class="hl std">= mean_final_pred,</span> <span class="hl kwc">yend</span> <span class="hl std">=</span> <span class="hl num">95</span><span class="hl std">),</span>
                 <span class="hl kwc">arrow</span> <span class="hl std">=</span> <span class="hl kwd">arrow</span><span class="hl std">(</span><span class="hl kwc">length</span> <span class="hl std">=</span> <span class="hl kwd">unit</span><span class="hl std">(</span><span class="hl num">0.03</span><span class="hl std">,</span> <span class="hl str">&quot;npc&quot;</span><span class="hl std">)))</span> <span class="hl opt">+</span>
    <span class="hl kwd">geom_vline</span><span class="hl std">(</span> <span class="hl kwc">alpha</span> <span class="hl std">=</span> <span class="hl num">.2</span><span class="hl std">,</span> <span class="hl kwc">size</span> <span class="hl std">=</span> <span class="hl num">.5</span><span class="hl std">,</span> <span class="hl kwd">aes</span><span class="hl std">(</span><span class="hl kwc">xintercept</span> <span class="hl std">= model_pred,</span> <span class="hl kwc">linetype</span> <span class="hl std">=</span> <span class="hl str">&quot;Model's prediction&quot;</span><span class="hl std">))</span> <span class="hl opt">+</span>
    <span class="hl kwd">geom_vline</span><span class="hl std">(</span><span class="hl kwc">alpha</span><span class="hl std">=</span><span class="hl num">.2</span><span class="hl std">,</span> <span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">.5</span><span class="hl std">,</span> <span class="hl kwd">aes</span><span class="hl std">(</span><span class="hl kwc">xintercept</span> <span class="hl std">= actual_price,</span> <span class="hl kwc">linetype</span><span class="hl std">=</span><span class="hl str">&quot;Actual price&quot;</span><span class="hl std">))</span><span class="hl opt">+</span>

    <span class="hl kwd">facet_grid</span><span class="hl std">(condition</span> <span class="hl opt">~</span> <span class="hl std">q_id,</span> <span class="hl kwc">scale</span> <span class="hl std">=</span> <span class="hl str">&quot;free_x&quot;</span><span class="hl std">)</span> <span class="hl opt">+</span>
    <span class="hl kwd">scale_x_continuous</span><span class="hl std">(</span><span class="hl kwc">breaks</span> <span class="hl std">= breaks,</span> <span class="hl kwc">labels</span> <span class="hl std">=</span> <span class="hl kwd">sprintf</span><span class="hl std">(</span><span class="hl str">'$%dM'</span><span class="hl std">, breaks))</span> <span class="hl opt">+</span>
    <span class="hl kwd">scale_fill_manual</span><span class="hl std">(</span><span class="hl kwc">guide</span> <span class="hl std">=</span> <span class="hl num">FALSE</span><span class="hl std">,</span> <span class="hl kwc">values</span><span class="hl std">=my_pallete)</span> <span class="hl opt">+</span>
    <span class="hl kwd">scale_colour_manual</span><span class="hl std">(</span><span class="hl kwc">guide</span> <span class="hl std">=</span> <span class="hl num">FALSE</span><span class="hl std">,</span> <span class="hl kwc">values</span><span class="hl std">=my_pallete)</span> <span class="hl opt">+</span>
    <span class="hl kwd">theme</span><span class="hl std">(</span><span class="hl kwc">panel.grid.major</span> <span class="hl std">=</span> <span class="hl kwd">element_blank</span><span class="hl std">(),</span> <span class="hl kwc">panel.grid.minor</span> <span class="hl std">=</span> <span class="hl kwd">element_blank</span><span class="hl std">(),</span>
           <span class="hl kwc">legend.position</span><span class="hl std">=</span><span class="hl str">&quot;top&quot;</span><span class="hl std">,</span><span class="hl kwc">legend.title</span> <span class="hl std">=</span> <span class="hl kwd">element_blank</span><span class="hl std">(),</span> <span class="hl kwc">legend.key</span> <span class="hl std">=</span> <span class="hl kwd">element_rect</span><span class="hl std">(</span><span class="hl kwc">size</span> <span class="hl std">=</span> <span class="hl num">10</span><span class="hl std">),</span> <span class="hl kwc">legend.key.size</span> <span class="hl std">=</span> <span class="hl kwd">unit</span><span class="hl std">(</span><span class="hl num">1.5</span><span class="hl std">,</span> <span class="hl str">'lines'</span><span class="hl std">),</span> <span class="hl kwc">legend.text</span><span class="hl std">=</span><span class="hl kwd">element_text</span><span class="hl std">(</span><span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">12</span><span class="hl std">),</span>
          <span class="hl kwc">axis.title.x</span> <span class="hl std">=</span> <span class="hl kwd">element_text</span><span class="hl std">(</span><span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">20</span><span class="hl std">),</span> <span class="hl kwc">axis.title.y</span> <span class="hl std">=</span> <span class="hl kwd">element_text</span><span class="hl std">(</span><span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">18</span><span class="hl std">),</span> <span class="hl kwc">axis.text.x</span> <span class="hl std">=</span> <span class="hl kwd">element_text</span><span class="hl std">(</span><span class="hl kwc">angle</span> <span class="hl std">=</span> <span class="hl num">45</span><span class="hl std">,</span> <span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">10</span><span class="hl std">),</span> <span class="hl kwc">axis.text.y</span> <span class="hl std">=</span> <span class="hl kwd">element_text</span><span class="hl std">(</span><span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">14</span><span class="hl std">),</span>
          <span class="hl kwc">strip.text</span> <span class="hl std">=</span> <span class="hl kwd">element_text</span><span class="hl std">(</span><span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">14</span><span class="hl std">))</span><span class="hl opt">+</span>
    <span class="hl kwd">labs</span><span class="hl std">(</span><span class="hl kwc">x</span> <span class="hl std">=</span> <span class="hl str">&quot;Participants' initial and final predictions&quot;</span><span class="hl std">,</span>
         <span class="hl kwc">y</span> <span class="hl std">=</span> <span class="hl str">&quot;Number of participants&quot;</span><span class="hl std">)</span>
<span class="hl std">}</span>

<span class="hl kwd">plot_shifts</span><span class="hl std">(responses1)</span>
</pre></div>
</div><div class="rimage center"><img src="figure/analyze-experiment-3-Rhtmlauto-report-1.png" title="plot of chunk auto-report" alt="plot of chunk auto-report" class="plot" /></div><div class="rcode">
<div class="source"><pre class="knitr r"><span class="hl kwd">ggsave</span><span class="hl std">(</span><span class="hl kwc">file</span> <span class="hl std">=</span> <span class="hl str">'figures/exp3/shift_histograms_1.pdf'</span><span class="hl std">,</span> <span class="hl kwc">height</span><span class="hl std">=</span><span class="hl num">10</span><span class="hl std">,</span> <span class="hl kwc">width</span><span class="hl std">=</span><span class="hl num">10</span><span class="hl std">)</span>
<span class="hl kwd">plot_shifts</span><span class="hl std">(responses2)</span>
</pre></div>
<div class="warning"><pre class="knitr r">## Warning: Removed 877 rows containing missing values (geom_vline).
</pre></div>
</div><div class="rimage center"><img src="figure/analyze-experiment-3-Rhtmlauto-report-2.png" title="plot of chunk auto-report" alt="plot of chunk auto-report" class="plot" /></div><div class="rcode">
<div class="source"><pre class="knitr r"><span class="hl kwd">ggsave</span><span class="hl std">(</span><span class="hl kwc">file</span> <span class="hl std">=</span> <span class="hl str">'figures/exp3/shift_histograms_2.pdf'</span><span class="hl std">,</span> <span class="hl kwc">height</span><span class="hl std">=</span><span class="hl num">10</span><span class="hl std">,</span> <span class="hl kwc">width</span><span class="hl std">=</span><span class="hl num">10</span><span class="hl std">)</span>
</pre></div>
<div class="warning"><pre class="knitr r">## Warning: Removed 877 rows containing missing values (geom_vline).
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># R2: how many subjects think the model underestimates the sale price of the unusual 3 bathroom apt?</span>

<span class="hl std">woa_responses</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">filter</span><span class="hl std">(q_id</span> <span class="hl opt">==</span> <span class="hl num">11</span><span class="hl std">)</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">summarize</span><span class="hl std">(</span><span class="hl kwd">mean</span><span class="hl std">(user_init_pred</span> <span class="hl opt">&lt;</span> <span class="hl std">model_pred))</span>
</pre></div>
<div class="output"><pre class="knitr r">## # A tibble: 1 x 1
##   `mean(user_init_pred &lt; model_pred)`
##                                 &lt;dbl&gt;
## 1                               0.888
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl std">woa_responses</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">filter</span><span class="hl std">(q_id</span> <span class="hl opt">==</span> <span class="hl num">11</span><span class="hl std">)</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">summarize</span><span class="hl std">(</span><span class="hl kwd">mean</span><span class="hl std">(user_init_pred</span> <span class="hl opt">&gt;</span> <span class="hl std">model_pred))</span>
</pre></div>
<div class="output"><pre class="knitr r">## # A tibble: 1 x 1
##   `mean(user_init_pred &gt; model_pred)`
##                                 &lt;dbl&gt;
## 1                              0.0721
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># R2: How many choose the midpoint of the scale? The ends?</span>
<span class="hl std">breaks</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">seq</span><span class="hl std">(</span><span class="hl num">0</span><span class="hl std">,</span><span class="hl num">3</span><span class="hl std">,</span><span class="hl num">1</span><span class="hl std">)</span>
<span class="hl std">woa_responses</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">count</span><span class="hl std">(user_init_pred)</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">frac</span> <span class="hl std">= n</span> <span class="hl opt">/</span> <span class="hl kwd">sum</span><span class="hl std">(n))</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">ggplot</span><span class="hl std">(</span><span class="hl kwd">aes</span><span class="hl std">(</span><span class="hl kwc">x</span> <span class="hl std">= user_init_pred,</span> <span class="hl kwc">y</span> <span class="hl std">= frac))</span> <span class="hl opt">+</span>
  <span class="hl kwd">scale_x_continuous</span><span class="hl std">(</span><span class="hl kwc">breaks</span> <span class="hl std">= breaks,</span> <span class="hl kwc">labels</span> <span class="hl std">=</span> <span class="hl kwd">sprintf</span><span class="hl std">(</span><span class="hl str">'$%dM'</span><span class="hl std">, breaks))</span> <span class="hl opt">+</span>
  <span class="hl kwd">geom_bar</span><span class="hl std">(</span><span class="hl kwc">stat</span> <span class="hl std">=</span> <span class="hl str">&quot;identity&quot;</span><span class="hl std">)</span><span class="hl opt">+</span>
  <span class="hl kwd">xlab</span><span class="hl std">(</span><span class="hl str">&quot;Participants' initial prediction&quot;</span><span class="hl std">)</span><span class="hl opt">+</span>
  <span class="hl kwd">ylab</span><span class="hl std">(</span><span class="hl str">&quot;Fraction of responses&quot;</span><span class="hl std">)</span><span class="hl opt">+</span>
  <span class="hl kwd">theme</span><span class="hl std">(</span><span class="hl kwc">legend.position</span><span class="hl std">=</span><span class="hl str">&quot;bottom&quot;</span><span class="hl std">,</span><span class="hl kwc">axis.title.x</span> <span class="hl std">=</span> <span class="hl kwd">element_text</span><span class="hl std">(</span><span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">14</span><span class="hl std">),</span> <span class="hl kwc">axis.title.y</span> <span class="hl std">=</span> <span class="hl kwd">element_text</span><span class="hl std">(</span><span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">18</span><span class="hl std">),</span>
        <span class="hl kwc">axis.text.x</span> <span class="hl std">=</span> <span class="hl kwd">element_text</span><span class="hl std">(</span><span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">9</span><span class="hl std">),</span> <span class="hl kwc">axis.text.y</span> <span class="hl std">=</span> <span class="hl kwd">element_text</span><span class="hl std">(</span><span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">14</span><span class="hl std">),</span>
        <span class="hl kwc">legend.text</span><span class="hl std">=</span><span class="hl kwd">element_text</span><span class="hl std">(</span><span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">9</span><span class="hl std">),</span> <span class="hl kwc">legend.title</span> <span class="hl std">=</span> <span class="hl kwd">element_blank</span><span class="hl std">(),</span> <span class="hl kwc">legend.spacing.x</span><span class="hl std">=</span><span class="hl kwd">unit</span><span class="hl std">(</span><span class="hl num">0.5</span><span class="hl std">,</span><span class="hl str">&quot;line&quot;</span><span class="hl std">),</span> <span class="hl kwc">legend.margin</span><span class="hl std">=</span><span class="hl kwd">margin</span><span class="hl std">(</span><span class="hl kwc">t</span><span class="hl std">=</span><span class="hl opt">-</span><span class="hl num">.5</span><span class="hl std">,</span> <span class="hl kwc">r</span><span class="hl std">=</span><span class="hl num">0</span><span class="hl std">,</span> <span class="hl kwc">b</span><span class="hl std">=</span><span class="hl num">0</span><span class="hl std">,</span> <span class="hl kwc">l</span><span class="hl std">=</span><span class="hl num">0</span><span class="hl std">,</span> <span class="hl kwc">unit</span><span class="hl std">=</span><span class="hl str">&quot;cm&quot;</span><span class="hl std">),</span>
        <span class="hl kwc">strip.text</span> <span class="hl std">=</span> <span class="hl kwd">element_text</span><span class="hl std">(</span><span class="hl kwc">size</span><span class="hl std">=</span><span class="hl num">9</span><span class="hl std">))</span><span class="hl opt">+</span>
<span class="hl kwd">ggsave</span><span class="hl std">(</span><span class="hl str">'figures/exp3/init_pred_hist.jpg'</span><span class="hl std">,</span>  <span class="hl kwc">height</span><span class="hl std">=</span><span class="hl num">4</span><span class="hl std">,</span> <span class="hl kwc">width</span><span class="hl std">=</span><span class="hl num">6</span><span class="hl std">)</span>
</pre></div>
</div><div class="rimage center"><img src="figure/analyze-experiment-3-Rhtmlauto-report-3.png" title="plot of chunk auto-report" alt="plot of chunk auto-report" class="plot" /></div><div class="rcode">
<div class="source"><pre class="knitr r"><span class="hl kwd">nrow</span><span class="hl std">(woa_responses[woa_responses</span><span class="hl opt">$</span><span class="hl std">user_init_pred</span> <span class="hl opt">==</span> <span class="hl num">0</span><span class="hl std">,])</span>
</pre></div>
<div class="output"><pre class="knitr r">## [1] 0
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl kwd">nrow</span><span class="hl std">(woa_responses[woa_responses</span><span class="hl opt">$</span><span class="hl std">user_init_pred</span> <span class="hl opt">==</span> <span class="hl num">3</span><span class="hl std">,])</span>
</pre></div>
<div class="output"><pre class="knitr r">## [1] 45
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl kwd">nrow</span><span class="hl std">(woa_responses[woa_responses</span><span class="hl opt">$</span><span class="hl std">user_init_pred</span> <span class="hl opt">==</span> <span class="hl num">1.5</span><span class="hl std">,])</span>
</pre></div>
<div class="output"><pre class="knitr r">## [1] 626
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com">##########</span>
<span class="hl com"># limit everything to first 10 questions for now</span>
<span class="hl std">woa_responses_normal</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">filter</span><span class="hl std">(woa_responses, q_id</span> <span class="hl opt">&lt;</span> <span class="hl num">10</span><span class="hl std">)</span>

<span class="hl std">model_expert_data</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">filter</span><span class="hl std">(woa_responses_normal, q_id</span> <span class="hl opt">&lt;</span> <span class="hl num">10</span><span class="hl std">)</span><span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">transparency</span> <span class="hl std">=</span> <span class="hl kwd">ifelse</span><span class="hl std">(condition</span> <span class="hl opt">==</span> <span class="hl str">&quot;CLEAR-2&quot;</span> <span class="hl opt">|</span> <span class="hl std">condition</span> <span class="hl opt">==</span> <span class="hl str">&quot;CLEAR-8&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;CLEAR&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;BB&quot;</span><span class="hl std">))</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">num_features</span> <span class="hl std">=</span> <span class="hl kwd">ifelse</span><span class="hl std">(condition</span> <span class="hl opt">==</span> <span class="hl str">&quot;CLEAR-2&quot;</span> <span class="hl opt">|</span> <span class="hl std">condition</span> <span class="hl opt">==</span> <span class="hl str">&quot;BB-2&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;two&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;eight&quot;</span><span class="hl std">))</span>
<span class="hl com">########################################</span>
<span class="hl com"># prediction error</span>
<span class="hl com">########################################</span>
<span class="hl std">model_data</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">filter</span><span class="hl std">(model_expert_data, condition</span> <span class="hl opt">!=</span> <span class="hl str">&quot;EXPERT&quot;</span><span class="hl std">)</span>

<span class="hl std">hlm_model</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">lmer</span><span class="hl std">(pred_err</span> <span class="hl opt">~</span> <span class="hl std">transparency</span><span class="hl opt">*</span><span class="hl std">num_features</span> <span class="hl opt">+</span> <span class="hl std">(</span><span class="hl num">1</span><span class="hl opt">|</span><span class="hl std">worker_id),</span> <span class="hl kwc">data</span><span class="hl std">=model_data)</span>
<span class="hl kwd">summary</span><span class="hl std">(hlm_model)</span>
</pre></div>
<div class="output"><pre class="knitr r">## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: pred_err ~ transparency * num_features + (1 | worker_id)
##    Data: model_data
## 
## REML criterion at convergence: -4522.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0450 -0.6638 -0.1195  0.4750  9.2910 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  worker_id (Intercept) 0.001278 0.03574 
##  Residual              0.032089 0.17913 
## Number of obs: 8020, groups:  worker_id, 802
## 
## Fixed effects:
##                                     Estimate Std. Error         df t value Pr(&gt;|t|)    
## (Intercept)                         0.217980   0.004760 798.000013  45.793   &lt;2e-16 ***
## transparencyCLEAR                   0.002870   0.006715 798.000010   0.427    0.669    
## num_featurestwo                     0.008456   0.006698 798.000010   1.262    0.207    
## transparencyCLEAR:num_featurestwo  -0.007771   0.009461 798.000008  -0.821    0.412    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trCLEAR nm_ftr
## trnsprCLEAR -0.709               
## num_fetrstw -0.711  0.504        
## trnsCLEAR:_  0.503 -0.710  -0.708
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># get the marginal means for all combinations of transparency and number of features</span>
<span class="hl std">means</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">emmeans</span><span class="hl std">(hlm_model,</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl str">&quot;transparency&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;num_features&quot;</span><span class="hl std">))</span>

<span class="hl com"># setup contrasts</span>
<span class="hl com"># clear vs. bb</span>
<span class="hl std">clist</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">list</span><span class="hl std">(</span><span class="hl kwc">clear_vs_bb</span> <span class="hl std">=</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl num">1</span><span class="hl std">,</span> <span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl num">1</span><span class="hl std">))</span>
<span class="hl std">emmeans</span><span class="hl opt">::</span><span class="hl kwd">contrast</span><span class="hl std">(means, clist)</span>
</pre></div>
<div class="output"><pre class="knitr r">##  contrast    estimate      SE  df t.ratio p.value
##  clear_vs_bb -0.00203 0.00946 798 -0.215  0.8301
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com">########################################</span>
<span class="hl com"># deviation</span>
<span class="hl com">########################################</span>
<span class="hl std">model_data</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">filter</span><span class="hl std">(model_expert_data, condition</span> <span class="hl opt">!=</span> <span class="hl str">&quot;EXPERT&quot;</span><span class="hl std">)</span>

<span class="hl com"># clear2 vs bb8</span>
<span class="hl std">hlm_model</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">lmer</span><span class="hl std">(deviation</span> <span class="hl opt">~</span> <span class="hl std">transparency</span><span class="hl opt">*</span><span class="hl std">num_features</span> <span class="hl opt">+</span> <span class="hl std">(</span><span class="hl num">1</span><span class="hl opt">|</span><span class="hl std">worker_id),</span> <span class="hl kwc">data</span><span class="hl std">=model_data)</span>
<span class="hl kwd">summary</span><span class="hl std">(hlm_model)</span>
</pre></div>
<div class="output"><pre class="knitr r">## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: deviation ~ transparency * num_features + (1 | worker_id)
##    Data: model_data
## 
## REML criterion at convergence: -9160.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0573 -0.6125 -0.1010  0.3173  9.4149 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  worker_id (Intercept) 0.006002 0.07747 
##  Residual              0.015923 0.12619 
## Number of obs: 8020, groups:  worker_id, 802
## 
## Fixed effects:
##                                     Estimate Std. Error         df t value Pr(&gt;|t|)    
## (Intercept)                         0.130707   0.006193 797.999185  21.105   &lt;2e-16 ***
## transparencyCLEAR                  -0.005857   0.008736 797.999199  -0.670    0.503    
## num_featurestwo                     0.011768   0.008715 797.999199   1.350    0.177    
## transparencyCLEAR:num_featurestwo  -0.013499   0.012309 797.999204  -1.097    0.273    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trCLEAR nm_ftr
## trnsprCLEAR -0.709               
## num_fetrstw -0.711  0.504        
## trnsCLEAR:_  0.503 -0.710  -0.708
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># look at ANOVA</span>
<span class="hl std">anova_table</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">anova</span><span class="hl std">(hlm_model)</span>

<span class="hl com"># export in LaTEX format</span>
<span class="hl kwd">xtable</span><span class="hl std">(anova_table)</span>
</pre></div>
<div class="output"><pre class="knitr r">## % latex table generated in R 3.5.1 by xtable 1.8-2 package
## % Fri Jan  8 17:58:49 2021
## \begin{table}[ht]
## \centering
## \begin{tabular}{lrrrrrr}
##   \hline
##  &amp; Sum Sq &amp; Mean Sq &amp; NumDF &amp; DenDF &amp; F value &amp; Pr($&gt;$F) \\ 
##   \hline
## transparency &amp; 0.07 &amp; 0.07 &amp; 1.00 &amp; 798.00 &amp; 4.20 &amp; 0.0409 \\ 
##   num\_features &amp; 0.01 &amp; 0.01 &amp; 1.00 &amp; 798.00 &amp; 0.66 &amp; 0.4151 \\ 
##   transparency:num\_features &amp; 0.02 &amp; 0.02 &amp; 1.00 &amp; 798.00 &amp; 1.20 &amp; 0.2731 \\ 
##    \hline
## \end{tabular}
## \end{table}
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># get the marginal means for all combinations of transparency and number of features</span>
<span class="hl std">means</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">emmeans</span><span class="hl std">(hlm_model,</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl str">&quot;transparency&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;num_features&quot;</span><span class="hl std">))</span>

<span class="hl com"># setup contrasts</span>
<span class="hl std">clist</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">list</span><span class="hl std">(</span><span class="hl kwc">clear2_vs_bb8</span> <span class="hl std">=</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl num">0</span><span class="hl std">,</span> <span class="hl num">0</span><span class="hl std">,</span> <span class="hl num">1</span><span class="hl std">))</span>
<span class="hl std">emmeans</span><span class="hl opt">::</span><span class="hl kwd">contrast</span><span class="hl std">(means, clist)</span>
</pre></div>
<div class="output"><pre class="knitr r">##  contrast      estimate      SE  df t.ratio p.value
##  clear2_vs_bb8 -0.00759 0.00871 798 -0.871  0.3842
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># POST-HOC: clear-2 else</span>
<span class="hl std">clist</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">list</span><span class="hl std">(</span><span class="hl kwc">clear2_vs_else</span> <span class="hl std">=</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl num">3</span><span class="hl std">))</span>
<span class="hl std">emmeans</span><span class="hl opt">::</span><span class="hl kwd">contrast</span><span class="hl std">(means, clist)</span>
</pre></div>
<div class="output"><pre class="knitr r">##  contrast       estimate     SE  df t.ratio p.value
##  clear2_vs_else  -0.0287 0.0213 798 -1.348  0.1779
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># bb8 vs EXPERT</span>
<span class="hl std">hlm_model</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">lmer</span><span class="hl std">(deviation</span> <span class="hl opt">~</span> <span class="hl std">condition</span> <span class="hl opt">+</span> <span class="hl std">(</span><span class="hl num">1</span><span class="hl opt">|</span><span class="hl std">worker_id),</span> <span class="hl kwc">data</span><span class="hl std">=model_expert_data)</span>
<span class="hl kwd">summary</span><span class="hl std">(hlm_model)</span>
</pre></div>
<div class="output"><pre class="knitr r">## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: deviation ~ condition + (1 | worker_id)
##    Data: model_expert_data
## 
## REML criterion at convergence: -11377.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4543 -0.6006 -0.1045  0.3039  9.3717 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  worker_id (Intercept) 0.006767 0.08226 
##  Residual              0.015815 0.12576 
## Number of obs: 9990, groups:  worker_id, 999
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(&gt;|t|)    
## (Intercept)      1.231e-01  6.429e-03 9.940e+02  19.151   &lt;2e-16 ***
## conditionCLEAR-8 1.731e-03  9.115e-03 9.940e+02   0.190   0.8494    
## conditionBB-2    1.936e-02  9.092e-03 9.940e+02   2.129   0.0335 *  
## conditionBB-8    7.588e-03  9.138e-03 9.940e+02   0.830   0.4065    
## conditionEXPERT  3.480e-03  9.149e-03 9.940e+02   0.380   0.7038    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cCLEAR cnBB-2 cnBB-8
## cndtCLEAR-8 -0.705                     
## conditnBB-2 -0.707  0.499              
## conditnBB-8 -0.704  0.496  0.497       
## cndtnEXPERT -0.703  0.496  0.497  0.494
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># look at ANOVA</span>
<span class="hl std">anova_table</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">anova</span><span class="hl std">(hlm_model)</span>

<span class="hl com"># export in LaTEX format</span>
<span class="hl kwd">xtable</span><span class="hl std">(anova_table)</span>
</pre></div>
<div class="output"><pre class="knitr r">## % latex table generated in R 3.5.1 by xtable 1.8-2 package
## % Fri Jan  8 17:58:49 2021
## \begin{table}[ht]
## \centering
## \begin{tabular}{lrrrrrr}
##   \hline
##  &amp; Sum Sq &amp; Mean Sq &amp; NumDF &amp; DenDF &amp; F value &amp; Pr($&gt;$F) \\ 
##   \hline
## condition &amp; 0.09 &amp; 0.02 &amp; 4.00 &amp; 994.00 &amp; 1.45 &amp; 0.2148 \\ 
##    \hline
## \end{tabular}
## \end{table}
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># get the marginal means for all combinations of transparency and number of features</span>
<span class="hl std">means</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">emmeans</span><span class="hl std">(hlm_model,</span> <span class="hl str">&quot;condition&quot;</span><span class="hl std">)</span>

<span class="hl com"># setup contrasts</span>
<span class="hl std">clist</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">list</span><span class="hl std">(</span><span class="hl kwc">bb8_vs_expert</span> <span class="hl std">=</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl num">0</span><span class="hl std">,</span> <span class="hl num">0</span><span class="hl std">,</span> <span class="hl num">0</span><span class="hl std">,</span> <span class="hl num">1</span><span class="hl std">,</span> <span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">))</span>
<span class="hl std">emmeans</span><span class="hl opt">::</span><span class="hl kwd">contrast</span><span class="hl std">(means, clist)</span>
</pre></div>
<div class="output"><pre class="knitr r">##  contrast      estimate      SE  df t.ratio p.value
##  bb8_vs_expert  0.00411 0.00919 994 0.447   0.6551
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># compute the means and standard errors by condition from the model</span>
<span class="hl std">hlm_model</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">lmer</span><span class="hl std">(deviation</span> <span class="hl opt">~</span> <span class="hl std">condition</span> <span class="hl opt">+</span> <span class="hl std">(</span><span class="hl num">1</span> <span class="hl opt">|</span> <span class="hl std">worker_id),</span> <span class="hl kwc">data</span> <span class="hl std">= model_expert_data)</span>
<span class="hl std">means</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">lsmeansLT</span><span class="hl std">(hlm_model,</span> <span class="hl str">&quot;condition&quot;</span><span class="hl std">)</span>

<span class="hl std">model_expert_data</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">outcome</span> <span class="hl std">= deviation</span> <span class="hl opt">*</span> <span class="hl num">1e3</span><span class="hl std">)</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">plot_distributions_with_means</span><span class="hl std">(.,</span> <span class="hl str">'Average deviation from the model'</span><span class="hl std">,</span> <span class="hl str">'Proportion of participants'</span><span class="hl std">, my_pallete)</span>
</pre></div>
<div class="warning"><pre class="knitr r">## Warning: Ignoring unknown aesthetics: x
</pre></div>
<div class="warning"><pre class="knitr r">## Warning: The plyr::rename operation has created duplicates for the following name(s):
## (`size`)
</pre></div>
<div class="message"><pre class="knitr r">## Picking joint bandwidth of 16.5
</pre></div>
</div><div class="rimage center"><img src="figure/analyze-experiment-3-Rhtmlauto-report-4.png" title="plot of chunk auto-report" alt="plot of chunk auto-report" class="plot" /></div><div class="rcode">
<div class="source"><pre class="knitr r"><span class="hl kwd">ggsave</span><span class="hl std">(</span><span class="hl kwc">file</span> <span class="hl std">=</span> <span class="hl str">'figures/exp3/dev_from_model.pdf'</span><span class="hl std">,</span> <span class="hl kwc">height</span> <span class="hl std">=</span> <span class="hl num">4.5</span><span class="hl std">,</span> <span class="hl kwc">width</span> <span class="hl std">=</span> <span class="hl num">4</span><span class="hl std">)</span>
</pre></div>
<div class="message"><pre class="knitr r">## Picking joint bandwidth of 16.5
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com">########################################</span>
<span class="hl com"># WEIGHT OF ADVICE</span>
<span class="hl com">########################################</span>
<span class="hl com"># keeping only finite (non Inf/NA) woa values</span>
<span class="hl std">model_expert_data_woa</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">filter</span><span class="hl std">(model_expert_data,</span> <span class="hl kwd">is.finite</span><span class="hl std">(woa))</span>

<span class="hl std">model_data_woa</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">filter</span><span class="hl std">(model_expert_data_woa, condition</span> <span class="hl opt">!=</span> <span class="hl str">&quot;EXPERT&quot;</span><span class="hl std">)</span>

<span class="hl com"># clear2 vs bb8</span>
<span class="hl std">hlm_model</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">lmer</span><span class="hl std">(woa</span> <span class="hl opt">~</span> <span class="hl std">transparency</span><span class="hl opt">*</span><span class="hl std">num_features</span> <span class="hl opt">+</span> <span class="hl std">(</span><span class="hl num">1</span><span class="hl opt">|</span><span class="hl std">worker_id),</span> <span class="hl kwc">data</span><span class="hl std">=model_data_woa)</span>
<span class="hl kwd">summary</span><span class="hl std">(hlm_model)</span>
</pre></div>
<div class="output"><pre class="knitr r">## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: woa ~ transparency * num_features + (1 | worker_id)
##    Data: model_data_woa
## 
## REML criterion at convergence: 9594.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9891 -0.5647 -0.0357  0.4674 10.8070 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  worker_id (Intercept) 0.05041  0.2245  
##  Residual              0.20449  0.4522  
## Number of obs: 6927, groups:  worker_id, 802
## 
## Fixed effects:
##                                    Estimate Std. Error        df t value Pr(&gt;|t|)    
## (Intercept)                         0.60350    0.01932 807.84408  31.235   &lt;2e-16 ***
## transparencyCLEAR                   0.03822    0.02728 809.88236   1.401   0.1616    
## num_featurestwo                    -0.05181    0.02725 814.60662  -1.901   0.0576 .  
## transparencyCLEAR:num_featurestwo   0.04823    0.03853 817.77441   1.252   0.2109    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trCLEAR nm_ftr
## trnsprCLEAR -0.708               
## num_fetrstw -0.709  0.502        
## trnsCLEAR:_  0.502 -0.708  -0.707
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># look at ANOVA</span>
<span class="hl std">anova_table</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">anova</span><span class="hl std">(hlm_model)</span>

<span class="hl com"># export in LaTEX format</span>
<span class="hl kwd">xtable</span><span class="hl std">(anova_table)</span>
</pre></div>
<div class="output"><pre class="knitr r">## % latex table generated in R 3.5.1 by xtable 1.8-2 package
## % Fri Jan  8 17:58:50 2021
## \begin{table}[ht]
## \centering
## \begin{tabular}{lrrrrrr}
##   \hline
##  &amp; Sum Sq &amp; Mean Sq &amp; NumDF &amp; DenDF &amp; F value &amp; Pr($&gt;$F) \\ 
##   \hline
## transparency &amp; 2.14 &amp; 2.14 &amp; 1.00 &amp; 817.77 &amp; 10.47 &amp; 0.0013 \\ 
##   num\_features &amp; 0.42 &amp; 0.42 &amp; 1.00 &amp; 817.77 &amp; 2.07 &amp; 0.1509 \\ 
##   transparency:num\_features &amp; 0.32 &amp; 0.32 &amp; 1.00 &amp; 817.77 &amp; 1.57 &amp; 0.2109 \\ 
##    \hline
## \end{tabular}
## \end{table}
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># get the marginal means for all combinations of transparency and number of features</span>
<span class="hl std">means</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">emmeans</span><span class="hl std">(hlm_model,</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl str">&quot;transparency&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;num_features&quot;</span><span class="hl std">))</span>

<span class="hl com"># setup contrasts</span>

<span class="hl std">clist</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">list</span><span class="hl std">(</span><span class="hl kwc">clear2_vs_bb8</span> <span class="hl std">=</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl num">0</span><span class="hl std">,</span> <span class="hl num">0</span><span class="hl std">,</span> <span class="hl num">1</span><span class="hl std">))</span>
<span class="hl std">emmeans</span><span class="hl opt">::</span><span class="hl kwd">contrast</span><span class="hl std">(means, clist)</span>
</pre></div>
<div class="output"><pre class="knitr r">##  contrast      estimate     SE  df t.ratio p.value
##  clear2_vs_bb8   0.0346 0.0273 819 1.270   0.2045
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># clear-2 else</span>
<span class="hl std">clist</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">list</span><span class="hl std">(</span><span class="hl kwc">clear2_vs_else</span> <span class="hl std">=</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl num">3</span><span class="hl std">))</span>
<span class="hl std">emmeans</span><span class="hl opt">::</span><span class="hl kwd">contrast</span><span class="hl std">(means, clist)</span>
</pre></div>
<div class="output"><pre class="knitr r">##  contrast       estimate     SE  df t.ratio p.value
##  clear2_vs_else    0.118 0.0667 826 1.761   0.0786
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># bb8 vs EXPERT</span>
<span class="hl std">hlm_model</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">lmer</span><span class="hl std">(woa</span> <span class="hl opt">~</span> <span class="hl std">condition</span> <span class="hl opt">+</span> <span class="hl std">(</span><span class="hl num">1</span><span class="hl opt">|</span><span class="hl std">worker_id),</span> <span class="hl kwc">data</span><span class="hl std">=model_expert_data_woa)</span>
<span class="hl kwd">summary</span><span class="hl std">(hlm_model)</span>
</pre></div>
<div class="output"><pre class="knitr r">## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: woa ~ condition + (1 | worker_id)
##    Data: model_expert_data_woa
## 
## REML criterion at convergence: 11517
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0890 -0.5558 -0.0275  0.4762 11.0996 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  worker_id (Intercept) 0.04742  0.2178  
##  Residual              0.19395  0.4404  
## Number of obs: 8650, groups:  worker_id, 999
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(&gt;|t|)    
## (Intercept)       6.381e-01  1.871e-02  1.031e+03  34.113   &lt;2e-16 ***
## conditionCLEAR-8  3.575e-03  2.645e-02  1.019e+03   0.135   0.8925    
## conditionBB-2    -8.646e-02  2.642e-02  1.025e+03  -3.272   0.0011 ** 
## conditionBB-8    -3.465e-02  2.650e-02  1.017e+03  -1.308   0.1913    
## conditionEXPERT  -2.458e-02  2.655e-02  1.019e+03  -0.926   0.3548    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cCLEAR cnBB-2 cnBB-8
## cndtCLEAR-8 -0.707                     
## conditnBB-2 -0.708  0.501              
## conditnBB-8 -0.706  0.499  0.500       
## cndtnEXPERT -0.705  0.498  0.499  0.498
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># look at ANOVA</span>
<span class="hl std">anova_table</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">anova</span><span class="hl std">(hlm_model)</span>

<span class="hl com"># export in LaTEX format</span>
<span class="hl kwd">xtable</span><span class="hl std">(anova_table)</span>
</pre></div>
<div class="output"><pre class="knitr r">## % latex table generated in R 3.5.1 by xtable 1.8-2 package
## % Fri Jan  8 17:58:50 2021
## \begin{table}[ht]
## \centering
## \begin{tabular}{lrrrrrr}
##   \hline
##  &amp; Sum Sq &amp; Mean Sq &amp; NumDF &amp; DenDF &amp; F value &amp; Pr($&gt;$F) \\ 
##   \hline
## condition &amp; 2.92 &amp; 0.73 &amp; 4.00 &amp; 1013.65 &amp; 3.77 &amp; 0.0048 \\ 
##    \hline
## \end{tabular}
## \end{table}
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># get the marginal means for all combinations of transparency and number of features</span>
<span class="hl std">means</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">emmeans</span><span class="hl std">(hlm_model,</span> <span class="hl str">&quot;condition&quot;</span><span class="hl std">)</span>

<span class="hl com"># setup contrasts</span>
<span class="hl std">clist</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">list</span><span class="hl std">(</span><span class="hl kwc">bb8_vs_expert</span> <span class="hl std">=</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl num">0</span><span class="hl std">,</span> <span class="hl num">0</span><span class="hl std">,</span> <span class="hl num">0</span><span class="hl std">,</span> <span class="hl num">1</span><span class="hl std">,</span> <span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">))</span>
<span class="hl std">emmeans</span><span class="hl opt">::</span><span class="hl kwd">contrast</span><span class="hl std">(means, clist)</span>
</pre></div>
<div class="output"><pre class="knitr r">##  contrast      estimate     SE   df t.ratio p.value
##  bb8_vs_expert  -0.0101 0.0266 1005 -0.379  0.7049
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl std">hlm_model</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">lmer</span><span class="hl std">(woa</span> <span class="hl opt">~</span> <span class="hl std">condition</span> <span class="hl opt">+</span> <span class="hl std">(</span><span class="hl num">1</span> <span class="hl opt">|</span> <span class="hl std">worker_id),</span> <span class="hl kwc">data</span> <span class="hl std">= model_expert_data_woa)</span>
<span class="hl kwd">summary</span><span class="hl std">(hlm_model)</span>
</pre></div>
<div class="output"><pre class="knitr r">## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: woa ~ condition + (1 | worker_id)
##    Data: model_expert_data_woa
## 
## REML criterion at convergence: 11517
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0890 -0.5558 -0.0275  0.4762 11.0996 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  worker_id (Intercept) 0.04742  0.2178  
##  Residual              0.19395  0.4404  
## Number of obs: 8650, groups:  worker_id, 999
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(&gt;|t|)    
## (Intercept)       6.381e-01  1.871e-02  1.031e+03  34.113   &lt;2e-16 ***
## conditionCLEAR-8  3.575e-03  2.645e-02  1.019e+03   0.135   0.8925    
## conditionBB-2    -8.646e-02  2.642e-02  1.025e+03  -3.272   0.0011 ** 
## conditionBB-8    -3.465e-02  2.650e-02  1.017e+03  -1.308   0.1913    
## conditionEXPERT  -2.458e-02  2.655e-02  1.019e+03  -0.926   0.3548    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cCLEAR cnBB-2 cnBB-8
## cndtCLEAR-8 -0.707                     
## conditnBB-2 -0.708  0.501              
## conditnBB-8 -0.706  0.499  0.500       
## cndtnEXPERT -0.705  0.498  0.499  0.498
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl std">model_expert_data_woa</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">outcome</span> <span class="hl std">= woa)</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">plot_distributions_with_means</span><span class="hl std">(.,</span> <span class="hl str">'Average weight of advice (WOA)'</span><span class="hl std">,</span> <span class="hl str">'Proportion of participants'</span><span class="hl std">, my_pallete,</span> <span class="hl kwc">label_format</span> <span class="hl std">=</span> <span class="hl str">'%.2f'</span><span class="hl std">)</span>
</pre></div>
<div class="warning"><pre class="knitr r">## Warning: Ignoring unknown aesthetics: x

## Warning: The plyr::rename operation has created duplicates for the following name(s):
## (`size`)
</pre></div>
<div class="message"><pre class="knitr r">## Picking joint bandwidth of 0.0698
</pre></div>
</div><div class="rimage center"><img src="figure/analyze-experiment-3-Rhtmlauto-report-5.png" title="plot of chunk auto-report" alt="plot of chunk auto-report" class="plot" /></div><div class="rcode">
<div class="source"><pre class="knitr r"><span class="hl kwd">ggsave</span><span class="hl std">(</span><span class="hl kwc">file</span> <span class="hl std">=</span> <span class="hl str">'figures/exp3/woa.pdf'</span><span class="hl std">,</span> <span class="hl kwc">height</span> <span class="hl std">=</span> <span class="hl num">4.5</span><span class="hl std">,</span> <span class="hl kwc">width</span> <span class="hl std">=</span> <span class="hl num">4</span><span class="hl std">)</span>
</pre></div>
<div class="message"><pre class="knitr r">## Picking joint bandwidth of 0.0698
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># response to R2</span>
<span class="hl com"># how many WOA responses are outside of [0,1]?</span>

<span class="hl com"># overall</span>

<span class="hl std">model_data</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">filter</span><span class="hl std">(q_id</span> <span class="hl opt">&lt;</span> <span class="hl num">10</span><span class="hl std">)</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">woa_bin</span> <span class="hl std">=</span> <span class="hl kwd">case_when</span><span class="hl std">(</span>
    <span class="hl kwd">is.finite</span><span class="hl std">(woa)</span> <span class="hl opt">&amp;</span> <span class="hl std">(user_init_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">final_pred</span> <span class="hl opt">&amp;</span> <span class="hl std">final_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">model_pred)</span><span class="hl opt">~</span> <span class="hl str">&quot;u1 &lt; u2 &lt; m (woa &lt;= 1)&quot;</span><span class="hl std">,</span>
    <span class="hl kwd">is.finite</span><span class="hl std">(woa)</span> <span class="hl opt">&amp;</span> <span class="hl std">(final_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">user_init_pred</span> <span class="hl opt">&amp;</span> <span class="hl std">user_init_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">model_pred)</span> <span class="hl opt">&amp;</span> <span class="hl std">woa</span> <span class="hl opt">&lt;=</span> <span class="hl num">1</span> <span class="hl opt">~</span> <span class="hl str">&quot;u2 &lt; u1 &lt; m and woa &lt;= 1&quot;</span><span class="hl std">,</span>
    <span class="hl kwd">is.finite</span><span class="hl std">(woa)</span> <span class="hl opt">&amp;</span> <span class="hl std">(final_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">user_init_pred</span> <span class="hl opt">&amp;</span> <span class="hl std">user_init_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">model_pred)</span> <span class="hl opt">&amp;</span> <span class="hl std">woa</span> <span class="hl opt">&gt;</span> <span class="hl num">1</span> <span class="hl opt">~</span> <span class="hl str">&quot;u2 &lt; u1 &lt; m and woa &gt; 1&quot;</span><span class="hl std">,</span>
    <span class="hl kwd">is.finite</span><span class="hl std">(woa)</span> <span class="hl opt">&amp;</span> <span class="hl std">(user_init_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">model_pred</span> <span class="hl opt">&amp;</span> <span class="hl std">model_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">final_pred)</span><span class="hl opt">~</span> <span class="hl str">&quot;u1 &lt; m &lt; u2 (woa &gt; 1)&quot;</span><span class="hl std">,</span>
    <span class="hl kwd">is.finite</span><span class="hl std">(woa)</span> <span class="hl opt">&amp;</span> <span class="hl std">(model_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">final_pred</span> <span class="hl opt">&amp;</span> <span class="hl std">final_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">user_init_pred)</span><span class="hl opt">~</span> <span class="hl str">&quot; m &lt; u2 &lt; u1 (woa &lt;= 1)&quot;</span><span class="hl std">,</span>
    <span class="hl kwd">is.finite</span><span class="hl std">(woa)</span> <span class="hl opt">&amp;</span> <span class="hl std">(final_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">model_pred</span> <span class="hl opt">&amp;</span> <span class="hl std">model_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">user_init_pred)</span><span class="hl opt">~</span> <span class="hl str">&quot; u2 &lt; m &lt; u1 (woa &gt; 1)&quot;</span><span class="hl std">,</span>
    <span class="hl kwd">is.finite</span><span class="hl std">(woa)</span> <span class="hl opt">&amp;</span> <span class="hl std">(model_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">user_init_pred</span> <span class="hl opt">&amp;</span> <span class="hl std">user_init_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">final_pred)</span> <span class="hl opt">&amp;</span> <span class="hl std">woa</span> <span class="hl opt">&lt;=</span> <span class="hl num">1</span> <span class="hl opt">~</span> <span class="hl str">&quot;m &lt; u1 &lt; u2 and woa &lt;= 1&quot;</span><span class="hl std">,</span>
    <span class="hl kwd">is.finite</span><span class="hl std">(woa)</span> <span class="hl opt">&amp;</span> <span class="hl std">(model_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">user_init_pred</span> <span class="hl opt">&amp;</span> <span class="hl std">user_init_pred</span> <span class="hl opt">&lt;=</span> <span class="hl std">final_pred)</span> <span class="hl opt">&amp;</span> <span class="hl std">woa</span> <span class="hl opt">&gt;</span> <span class="hl num">1</span> <span class="hl opt">~</span> <span class="hl str">&quot;m &lt; u1 &lt; u2 and woa &gt; 1&quot;</span><span class="hl std">,</span>

    <span class="hl opt">!</span><span class="hl kwd">is.finite</span><span class="hl std">(woa)</span> <span class="hl opt">~</span> <span class="hl str">&quot;WOA undefined\n(Initial prediction matched model)&quot;</span><span class="hl std">,</span>
    <span class="hl num">TRUE</span> <span class="hl opt">~</span> <span class="hl str">&quot;Other&quot;</span>
  <span class="hl std">))</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">count</span><span class="hl std">(woa_bin)</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">ungroup</span><span class="hl std">()</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">frac_in_bin</span> <span class="hl std">= n</span> <span class="hl opt">/</span> <span class="hl kwd">sum</span><span class="hl std">(n),</span>
         <span class="hl kwc">se</span> <span class="hl std">=</span> <span class="hl kwd">sqrt</span><span class="hl std">(frac_in_bin</span> <span class="hl opt">*</span> <span class="hl std">(</span><span class="hl num">1</span> <span class="hl opt">-</span> <span class="hl std">frac_in_bin)</span> <span class="hl opt">/</span> <span class="hl std">n))</span>
</pre></div>
<div class="output"><pre class="knitr r">## # A tibble: 9 x 4
##   woa_bin                                                 n frac_in_bin      se
##   &lt;chr&gt;                                               &lt;int&gt;       &lt;dbl&gt;   &lt;dbl&gt;
## 1 &quot; m &lt; u2 &lt; u1 (woa &lt;= 1)&quot;                            3820     0.476   0.00808
## 2 &quot; u2 &lt; m &lt; u1 (woa &gt; 1)&quot;                              194     0.0242  0.0110 
## 3 &quot;m &lt; u1 &lt; u2 and woa &lt;= 1&quot;                             49     0.00611 0.0111 
## 4 &quot;m &lt; u1 &lt; u2 and woa &gt; 1&quot;                              33     0.00411 0.0111 
## 5 &quot;u1 &lt; m &lt; u2 (woa &gt; 1)&quot;                               224     0.0279  0.0110 
## 6 &quot;u1 &lt; u2 &lt; m (woa &lt;= 1)&quot;                             2571     0.321   0.00920
## 7 &quot;u2 &lt; u1 &lt; m and woa &lt;= 1&quot;                             22     0.00274 0.0112 
## 8 &quot;u2 &lt; u1 &lt; m and woa &gt; 1&quot;                              14     0.00175 0.0112 
## 9 &quot;WOA undefined\n(Initial prediction matched model)&quot;  1093     0.136   0.0104
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com">####################################</span>
<span class="hl com"># last two questions (unusual apartments)</span>
<span class="hl com">####################################</span>
<span class="hl std">woa_responses_unusual</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">filter</span><span class="hl std">(woa_responses, q_id</span> <span class="hl opt">&gt;=</span> <span class="hl num">10</span><span class="hl std">)</span>

<span class="hl com">########################################</span>
<span class="hl com"># deviation for q11</span>
<span class="hl com">########################################</span>
<span class="hl com"># anova for q11</span>
<span class="hl std">q11_model_data</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">filter</span><span class="hl std">(woa_responses_unusual, condition</span> <span class="hl opt">!=</span> <span class="hl str">&quot;EXPERT&quot;</span><span class="hl std">, q_id</span> <span class="hl opt">==</span> <span class="hl num">10</span><span class="hl std">)</span><span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">transparency</span> <span class="hl std">=</span> <span class="hl kwd">ifelse</span><span class="hl std">(condition</span> <span class="hl opt">==</span> <span class="hl str">&quot;CLEAR-2&quot;</span> <span class="hl opt">|</span> <span class="hl std">condition</span> <span class="hl opt">==</span> <span class="hl str">&quot;CLEAR-8&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;CLEAR&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;BB&quot;</span><span class="hl std">))</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">num_features</span> <span class="hl std">=</span> <span class="hl kwd">ifelse</span><span class="hl std">(condition</span> <span class="hl opt">==</span> <span class="hl str">&quot;CLEAR-2&quot;</span> <span class="hl opt">|</span> <span class="hl std">condition</span> <span class="hl opt">==</span> <span class="hl str">&quot;BB-2&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;two&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;eight&quot;</span><span class="hl std">))</span>

<span class="hl com"># fit the one factor model</span>
<span class="hl std">lm_model</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">lm</span><span class="hl std">(deviation</span> <span class="hl opt">~</span> <span class="hl std">condition,</span> <span class="hl kwc">data</span><span class="hl std">=q11_model_data)</span>
<span class="hl kwd">summary</span><span class="hl std">(lm_model)</span>
</pre></div>
<div class="output"><pre class="knitr r">## 
## Call:
## lm(formula = deviation ~ condition, data = q11_model_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.14901 -0.04901 -0.02980  0.05495  0.67020 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(&gt;|t|)    
## (Intercept)       0.149010   0.008208  18.155  &lt; 2e-16 ***
## conditionCLEAR-8 -0.039010   0.011636  -3.352 0.000839 ***
## conditionBB-2    -0.003960   0.011607  -0.341 0.733045    
## conditionBB-8    -0.019212   0.011666  -1.647 0.099982 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1167 on 798 degrees of freedom
## Multiple R-squared:  0.01708,	Adjusted R-squared:  0.01339 
## F-statistic: 4.622 on 3 and 798 DF,  p-value: 0.003256
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># look at one-way ANOVA</span>
<span class="hl kwd">anova</span><span class="hl std">(lm_model)</span>
</pre></div>
<div class="output"><pre class="knitr r">## Analysis of Variance Table
## 
## Response: deviation
##            Df  Sum Sq  Mean Sq F value   Pr(&gt;F)   
## condition   3  0.1887 0.062900  4.6223 0.003256 **
## Residuals 798 10.8590 0.013608                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># run 2-by-2 anova for deviation on q11</span>
<span class="hl com"># fit the two factor model</span>
<span class="hl std">lm_model</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">lm</span><span class="hl std">(deviation</span> <span class="hl opt">~</span> <span class="hl std">transparency</span><span class="hl opt">*</span><span class="hl std">num_features,</span> <span class="hl kwc">data</span><span class="hl std">=q11_model_data)</span>
<span class="hl kwd">summary</span><span class="hl std">(lm_model)</span>
</pre></div>
<div class="output"><pre class="knitr r">## 
## Call:
## lm(formula = deviation ~ transparency * num_features, data = q11_model_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.14901 -0.04901 -0.02980  0.05495  0.67020 
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(&gt;|t|)    
## (Intercept)                        0.12980    0.00829  15.657   &lt;2e-16 ***
## transparencyCLEAR                 -0.01980    0.01170  -1.693   0.0909 .  
## num_featurestwo                    0.01525    0.01167   1.307   0.1915    
## transparencyCLEAR:num_featurestwo  0.02376    0.01648   1.442   0.1497    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1167 on 798 degrees of freedom
## Multiple R-squared:  0.01708,	Adjusted R-squared:  0.01339 
## F-statistic: 4.622 on 3 and 798 DF,  p-value: 0.003256
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># look at ANOVA</span>
<span class="hl std">anova_table</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">anova</span><span class="hl std">(lm_model)</span>

<span class="hl com"># export in LaTEX format</span>
<span class="hl kwd">xtable</span><span class="hl std">(anova_table)</span>
</pre></div>
<div class="output"><pre class="knitr r">## % latex table generated in R 3.5.1 by xtable 1.8-2 package
## % Fri Jan  8 17:58:51 2021
## \begin{table}[ht]
## \centering
## \begin{tabular}{lrrrrr}
##   \hline
##  &amp; Df &amp; Sum Sq &amp; Mean Sq &amp; F value &amp; Pr($&gt;$F) \\ 
##   \hline
## transparency &amp; 1 &amp; 0.01 &amp; 0.01 &amp; 0.92 &amp; 0.3380 \\ 
##   num\_features &amp; 1 &amp; 0.15 &amp; 0.15 &amp; 10.87 &amp; 0.0010 \\ 
##   transparency:num\_features &amp; 1 &amp; 0.03 &amp; 0.03 &amp; 2.08 &amp; 0.1497 \\ 
##   Residuals &amp; 798 &amp; 10.86 &amp; 0.01 &amp;  &amp;  \\ 
##    \hline
## \end{tabular}
## \end{table}
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># get the marginal means for all combinations of transparency and number of features</span>
<span class="hl std">means</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">emmeans</span><span class="hl std">(lm_model,</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl str">&quot;transparency&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;num_features&quot;</span><span class="hl std">))</span>

<span class="hl com"># setup contrasts</span>
<span class="hl std">clist</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">list</span><span class="hl std">(</span><span class="hl kwc">clear_vs_bb</span> <span class="hl std">=</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl num">1</span><span class="hl std">,</span> <span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl num">1</span><span class="hl std">))</span>
<span class="hl std">emmeans</span><span class="hl opt">::</span><span class="hl kwd">contrast</span><span class="hl std">(means, clist)</span>
</pre></div>
<div class="output"><pre class="knitr r">##  contrast    estimate     SE  df t.ratio p.value
##  clear_vs_bb  -0.0158 0.0165 798 -0.961  0.3368
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com">########################################</span>
<span class="hl com"># DEVIATION for q12</span>
<span class="hl com">########################################</span>
<span class="hl com"># anova for q12</span>
<span class="hl std">q12_model_data</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">filter</span><span class="hl std">(woa_responses_unusual, condition</span> <span class="hl opt">!=</span> <span class="hl str">&quot;EXPERT&quot;</span><span class="hl std">, q_id</span> <span class="hl opt">==</span> <span class="hl num">11</span><span class="hl std">)</span><span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">transparency</span> <span class="hl std">=</span> <span class="hl kwd">ifelse</span><span class="hl std">(condition</span> <span class="hl opt">==</span> <span class="hl str">&quot;CLEAR-2&quot;</span> <span class="hl opt">|</span> <span class="hl std">condition</span> <span class="hl opt">==</span> <span class="hl str">&quot;CLEAR-8&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;CLEAR&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;BB&quot;</span><span class="hl std">))</span> <span class="hl opt">%&gt;%</span>
  <span class="hl kwd">mutate</span><span class="hl std">(</span><span class="hl kwc">num_features</span> <span class="hl std">=</span> <span class="hl kwd">ifelse</span><span class="hl std">(condition</span> <span class="hl opt">==</span> <span class="hl str">&quot;CLEAR-2&quot;</span> <span class="hl opt">|</span> <span class="hl std">condition</span> <span class="hl opt">==</span> <span class="hl str">&quot;BB-2&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;two&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;eight&quot;</span><span class="hl std">))</span>

<span class="hl com"># fit the one factor model</span>
<span class="hl std">lm_model</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">lm</span><span class="hl std">(deviation</span> <span class="hl opt">~</span> <span class="hl std">condition,</span> <span class="hl kwc">data</span><span class="hl std">=q12_model_data)</span>
<span class="hl kwd">summary</span><span class="hl std">(lm_model)</span>
</pre></div>
<div class="output"><pre class="knitr r">## 
## Call:
## lm(formula = deviation ~ condition, data = q12_model_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.25891 -0.15347 -0.03582  0.09250  0.94653 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(&gt;|t|)    
## (Intercept)       0.258911   0.013488  19.196  &lt; 2e-16 ***
## conditionCLEAR-8 -0.051411   0.019122  -2.689  0.00733 ** 
## conditionBB-2    -0.005446   0.019075  -0.285  0.77535    
## conditionBB-8    -0.040729   0.019171  -2.125  0.03393 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1917 on 798 degrees of freedom
## Multiple R-squared:  0.01318,	Adjusted R-squared:  0.009466 
## F-statistic: 3.551 on 3 and 798 DF,  p-value: 0.01416
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># look at one-way ANOVA</span>
<span class="hl kwd">anova</span><span class="hl std">(lm_model)</span>
</pre></div>
<div class="output"><pre class="knitr r">## Analysis of Variance Table
## 
## Response: deviation
##            Df  Sum Sq  Mean Sq F value  Pr(&gt;F)  
## condition   3  0.3915 0.130510  3.5515 0.01416 *
## Residuals 798 29.3248 0.036748                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># run 2-by-2 anova for deviation on q11</span>
<span class="hl com"># fit the two factor model</span>
<span class="hl std">lm_model</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">lm</span><span class="hl std">(deviation</span> <span class="hl opt">~</span> <span class="hl std">transparency</span><span class="hl opt">*</span><span class="hl std">num_features,</span> <span class="hl kwc">data</span><span class="hl std">=q12_model_data)</span>
<span class="hl kwd">summary</span><span class="hl std">(lm_model)</span>
</pre></div>
<div class="output"><pre class="knitr r">## 
## Call:
## lm(formula = deviation ~ transparency * num_features, data = q12_model_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.25891 -0.15347 -0.03582  0.09250  0.94653 
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(&gt;|t|)    
## (Intercept)                        0.21818    0.01362  16.015   &lt;2e-16 ***
## transparencyCLEAR                 -0.01068    0.01922  -0.556   0.5785    
## num_featurestwo                    0.03528    0.01917   1.840   0.0661 .  
## transparencyCLEAR:num_featurestwo  0.01613    0.02708   0.596   0.5516    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1917 on 798 degrees of freedom
## Multiple R-squared:  0.01318,	Adjusted R-squared:  0.009466 
## F-statistic: 3.551 on 3 and 798 DF,  p-value: 0.01416
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># look at ANOVA</span>
<span class="hl std">anova_table</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">anova</span><span class="hl std">(lm_model)</span>

<span class="hl com"># export in LaTEX format</span>
<span class="hl kwd">xtable</span><span class="hl std">(anova_table)</span>
</pre></div>
<div class="output"><pre class="knitr r">## % latex table generated in R 3.5.1 by xtable 1.8-2 package
## % Fri Jan  8 17:58:51 2021
## \begin{table}[ht]
## \centering
## \begin{tabular}{lrrrrr}
##   \hline
##  &amp; Df &amp; Sum Sq &amp; Mean Sq &amp; F value &amp; Pr($&gt;$F) \\ 
##   \hline
## transparency &amp; 1 &amp; 0.00 &amp; 0.00 &amp; 0.04 &amp; 0.8439 \\ 
##   num\_features &amp; 1 &amp; 0.38 &amp; 0.38 &amp; 10.26 &amp; 0.0014 \\ 
##   transparency:num\_features &amp; 1 &amp; 0.01 &amp; 0.01 &amp; 0.35 &amp; 0.5516 \\ 
##   Residuals &amp; 798 &amp; 29.32 &amp; 0.04 &amp;  &amp;  \\ 
##    \hline
## \end{tabular}
## \end{table}
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl com"># get the marginal means for all combinations of transparency and number of features</span>
<span class="hl std">means</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">emmeans</span><span class="hl std">(lm_model,</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl str">&quot;transparency&quot;</span><span class="hl std">,</span> <span class="hl str">&quot;num_features&quot;</span><span class="hl std">))</span>

<span class="hl com"># setup contrasts</span>
<span class="hl std">clist</span> <span class="hl kwb">&lt;-</span> <span class="hl kwd">list</span><span class="hl std">(</span><span class="hl kwc">clear_vs_bb</span> <span class="hl std">=</span> <span class="hl kwd">c</span><span class="hl std">(</span><span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl num">1</span><span class="hl std">,</span> <span class="hl opt">-</span><span class="hl num">1</span><span class="hl std">,</span> <span class="hl num">1</span><span class="hl std">))</span>
<span class="hl std">emmeans</span><span class="hl opt">::</span><span class="hl kwd">contrast</span><span class="hl std">(means, clist)</span>
</pre></div>
<div class="output"><pre class="knitr r">##  contrast    estimate     SE  df t.ratio p.value
##  clear_vs_bb -0.00524 0.0271 798 -0.193  0.8467
</pre></div>
</div></div>

  <p>The R session information (including the OS info, R version and all
    packages used):</p>

<div class="chunk" id="session-info"><div class="rcode"><div class="source"><pre class="knitr r">    <span class="hl kwd">sessionInfo</span><span class="hl std">()</span>
</pre></div>
<div class="output"><pre class="knitr r">## R version 3.5.1 (2018-07-02)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS  10.16
## 
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] forcats_0.3.0   stringr_1.3.1   purrr_0.2.5     tibble_2.1.3    tidyverse_1.2.1
##  [6] ggridges_0.5.1  lsr_0.5         emmeans_1.4     xtable_1.8-2    tidyr_0.8.1    
## [11] dplyr_0.8.3     magrittr_1.5    readr_1.1.1     ggrepel_0.8.0   ggplot2_3.0.0  
## [16] scales_0.5.0    lsmeans_2.27-62 lmerTest_3.0-1  lme4_1.1-17     Matrix_1.2-14  
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.3        lubridate_1.7.4   mvtnorm_1.0-8     lattice_0.20-35  
##  [5] zoo_1.8-3         zeallot_0.1.0     utf8_1.1.4        digest_0.6.15    
##  [9] assertthat_0.2.0  R6_2.2.2          cellranger_1.1.0  plyr_1.8.4       
## [13] backports_1.1.2   evaluate_0.11     coda_0.19-1       httr_1.3.1       
## [17] highr_0.7         pillar_1.4.3      rlang_0.4.2       lazyeval_0.2.1   
## [21] multcomp_1.4-8    readxl_1.1.0      minqa_1.2.4       rstudioapi_0.7   
## [25] nloptr_1.0.4      labeling_0.3      splines_3.5.1     munsell_0.5.0    
## [29] broom_0.5.0       compiler_3.5.1    numDeriv_2016.8-1 modelr_0.1.2     
## [33] pkgconfig_2.0.1   tidyselect_0.2.5  codetools_0.2-15  fansi_0.4.1      
## [37] crayon_1.3.4      withr_2.1.2       MASS_7.3-50       grid_3.5.1       
## [41] nlme_3.1-137      jsonlite_1.5      gtable_0.2.0      estimability_1.3 
## [45] cli_1.1.0         stringi_1.2.3     reshape2_1.4.3    xml2_1.2.0       
## [49] vctrs_0.2.1       sandwich_2.4-0    TH.data_1.0-9     tools_3.5.1      
## [53] glue_1.3.1        hms_0.4.2         survival_2.42-3   colorspace_1.3-2 
## [57] rvest_0.3.2       knitr_1.20        haven_1.1.2
</pre></div>
<div class="source"><pre class="knitr r">    <span class="hl kwd">Sys.time</span><span class="hl std">()</span>
</pre></div>
<div class="output"><pre class="knitr r">## [1] &quot;2021-01-08 17:58:53 EST&quot;
</pre></div>
</div></div>


</body>
</html>