-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathinference_TTA.py
250 lines (220 loc) · 10.4 KB
/
inference_TTA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# -*- coding: utf-8 -*-
"""
@author : GiantPandaSR
@data : 2021-02-09
@describe : Training with DDP or DataParallel
"""
from __future__ import print_function
from config.Config import Config
from skimage.metrics import peak_signal_noise_ratio as psnr
# system
import warnings
warnings.filterwarnings("ignore")
import os
import cv2
import time
import argparse
import imageio
from tqdm import tqdm
# torch
import torch
import torch.multiprocessing as mp
import torch.distributed as dist
import torch.utils.data as data
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
# model
# from model.NTIRE2020_Deblur_top.uniA import AtrousNet
from model.NTIRE2021_Deblur.uniA_ELU.model_stage1_Upsample_Deep import AtrousNet_billinear_Wide as AtrousNet
# from model.NTIRE2021_Deblur.uniA_ELU.wavelet_SRCNN_remix import SRCNN as AtrousNet
# from model.NTIRE2021_Deblur.uniA_ELU.wavelet_deblur_remix import AtrousNet_wavlet_remix as AtrousNet
from torch.utils.data.dataset import Dataset
from PIL import Image
from torchvision import utils as vutils
from config.Config import Config
from data.augments import *
import json
parser = argparse.ArgumentParser(description='SR DDP Inference')
parser.add_argument('--config_file', type=str,
default="/data/jiangmingchao/data/SR_NTIRE2021/config/VDSR.yaml")
parser.add_argument('--ngpu', type=int, default=1)
parser.add_argument('--world-size', type=int, default=1,
help="number of nodes for distributed training")
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:9999', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--multiprocessing-distributed', default=1, type=int,
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--local_rank', default=1)
parser.add_argument('--dataparallel', default=1, type=int,
help="model data parallel")
# random seed
def setup_seed(seed=100):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
def translate_state_dict(state_dict):
new_state_dict = {}
for key, value in state_dict.items():
if 'module' in key:
new_state_dict[key[7:]] = value
else:
new_state_dict[key] = value
return new_state_dict
class single_image_loader(Dataset):
def __init__(self, cfg, rec_path, mode="png2png"):
super(single_image_loader, self).__init__()
self.cfg = cfg
self.range = self.cfg.INPUT.RANGE
self.mode = mode
self.lr_path = rec_path
self.mean = self.cfg.INPUT.MEAN
self.std = self.cfg.INPUT.STD
self.norm = self.cfg.INPUT.NORM
self.base_transforms = self.infer_preprocess()
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# self.image_file = self.cfg.DATA.TRAIN.LR_PATH
self.file_list = self._get_image_list()
def _get_image_list(self):
image_path_list = [json.loads(x.strip()) for x in open(self.lr_path).readlines()]
return image_path_list
def infer_preprocess(self):
if self.norm:
base_transforms = Compose([
ToTensor2() if self.range == 255 else ToTensor(),
Normalize(self.mean, self.std)
])
else:
base_transforms = Compose([
ToTensor2() if self.range == 255 else ToTensor(),
])
return base_transforms
def _load_image(self, img_path, num_retry=20):
for _ in range(num_retry):
try:
if img_path[:4] == 'http':
img = Image.open(BytesIO(urllib.request.urlopen(img_path).read())).convert('RGB')
# img = np.asarray(img)
else:
img = cv2.imread(img_path, -1)
img_BGR = img
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_rot_90 = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
img_rot_180 = cv2.rotate(img, cv2.ROTATE_180)
img_rot_270 = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)
img_flip_h = cv2.flip(img, 1)
img_flip_v = cv2.flip(img, 0)
img = Image.fromarray(img)
img_rot_90 = Image.fromarray(img_rot_90)
img_rot_180 = Image.fromarray(img_rot_180)
img_rot_270 = Image.fromarray(img_rot_270)
img_flip_h = Image.fromarray(img_flip_h)
img_flip_v = Image.fromarray(img_flip_v)
img_BGR = Image.fromarray(img_BGR)
break
except Exception as e:
time.sleep(5)
print(f'Open image {img_path} failed, try again... resean is {e}')
else:
raise Exception(f'Open image: {img_path} failed!')
return img, img_rot_90, img_rot_180, img_rot_270, img_flip_h, img_flip_v, img_BGR
def __len__(self):
return len(self.file_list)
def __getitem__(self, index):
lr_img_path = self.file_list[index]["image_path"]
lr_image_key = self.file_list[index]["image_key"]
lr_img, lr_img_rot_90, lr_img_rot_180, lr_img_rot_270, img_flip_h, img_flip_v, img_BGR = self._load_image(lr_img_path)
if self.base_transforms is not None:
lr_img, lr_img = self.base_transforms(lr_img, lr_img)
lr_img_rot_90, lr_img_rot_90 = self.base_transforms(lr_img_rot_90,lr_img_rot_90)
lr_img_rot_180, lr_img_rot_180 = self.base_transforms(lr_img_rot_180, lr_img_rot_180)
lr_img_rot_270, lr_img_rot_270 = self.base_transforms(lr_img_rot_270, lr_img_rot_270)
img_flip_h, img_flip_h = self.base_transforms(img_flip_h, img_flip_h)
img_flip_v, img_flip_v = self.base_transforms(img_flip_v, img_flip_v)
img_BGR, img_BGR = self.base_transforms(img_BGR, img_BGR)
return lr_image_key, lr_img, lr_img_rot_90, lr_img_rot_180, lr_img_rot_270, img_flip_h, img_flip_v, img_BGR
def model_initializer(opt):
# Non-distributed GPU Parallel
device = opt['device']
model_arch = "{}-{}".format("SR","AtrousNet")
model = AtrousNet(3, 3)
model_weights = torch.load(opt['model_pth'])
model.load_state_dict(model_weights['state_dict'],strict=True)
model = model.eval()
model = model.to(device)
return model
def inference(cfg, opt):
model = model_initializer(opt)
train_dataset = single_image_loader(cfg, opt['working_path'])
train_loader = DataLoader(
dataset=train_dataset,
batch_size=2,
num_workers=8)
PSNR = []
for batch_idx, data in enumerate(tqdm(train_loader)):
# Now only support single image inference
# file_name = os.path.split(data[0][0])[1]
# hr_image = cv2.imread(os.path.join(opt['HR_path'], file_name.replace('.jpg', '.png')))
# hr_image = cv2.cvtColor(hr_image, cv2.COLOR_BGR2RGB)
# print(file_name)
# 1 -> 4
img_data = data[1:]
output_imgs = []
for idx, img in enumerate(img_data):
'''lr_img, lr_img_rot_90, lr_img_rot_180, lr_img_rot_270'''
img = img.to(opt['device'])
with torch.no_grad():
output = model(img)
for i in range(len(output)):
output_img = output[i,:,:,:].float().cpu()
file_name = data[0][i]
if cfg.INPUT.NORM:
denormalize = DeNormalize(cfg.INPUT.MEAN, cfg.INPUT.STD)
output_img = denormalize(output_img)
if cfg.INPUT.RANGE == 255:
output_img.clamp_(0,255)
output_img = output_img.permute(1, 2, 0).cpu().numpy().round().astype(np.uint8)
else:
output_img.clamp_(0,1)
output_img = (output_img.permute(1, 2, 0).cpu().numpy()*255.0).round().astype(np.uint8)
if idx == 0:
output_imgs.append(output_img)
elif idx == 1:
output_imgs.append(cv2.rotate(output_img, cv2.ROTATE_90_COUNTERCLOCKWISE))
elif idx == 2:
output_imgs.append(cv2.rotate(output_img, cv2.ROTATE_180))
elif idx == 3:
output_imgs.append(cv2.rotate(output_img, cv2.ROTATE_90_CLOCKWISE))
elif idx == 4:
output_imgs.append(cv2.flip(output_img, 1))
elif idx == 5:
output_imgs.append(cv2.flip(output_img, 0))
elif idx == 6:
output_imgs.append(cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB))
mean_img = np.mean(np.array(output_imgs), axis=0).round().astype(np.uint8)
# PSNR.append(psnr(hr_image, mean_img))
imageio.imwrite(os.path.join(opt['output_path'], file_name.replace('.jpg', '.png')), mean_img)
# print('nAverage PSNR:{:.3f}'.format(sum(PSNR)/len(PSNR)))
if __name__ == '__main__':
opt = dict()
opt['device'] = "cuda"
opt['model_pth'] = '/data/jiangmingchao/data/output_ckpt_with_logs/64w_2epoch_4e-5_pretrain_no_sr/ckpt/AtrousNetEluUpWide_best_psnr_27.845035552978516.pth'
opt['working_path'] = '/data/jiangmingchao/data/dataset/SR_localdata/tta_3000.log'
opt['output_path'] = "/data/jiangmingchao/data/dataset/SR_localdata/test_3000_tta"
opt['config_file'] = "/data/jiangmingchao/data/SR_NTIRE2021/config/inference/ALL_TRAIN_CROP_INFERENCE.yaml"
cfg = Config(opt['config_file'])()
if not os.path.exists(opt['output_path']):
os.makedirs(opt['output_path'])
inference(cfg, opt)