From 57a3fa26cbf3a0478142e93ec16ebb25a62b5847 Mon Sep 17 00:00:00 2001 From: Michael Abbott <32575566+mcabbott@users.noreply.github.com> Date: Fri, 25 Mar 2022 21:18:26 -0400 Subject: [PATCH 1/7] attempt 62 --- src/destructure.jl | 6 +++--- test/destructure.jl | 47 ++++++++++++++++++++++++++++++++++++++++++--- test/runtests.jl | 17 ++++++++++++++++ 3 files changed, 64 insertions(+), 6 deletions(-) diff --git a/src/destructure.jl b/src/destructure.jl index 2b91983d..15a4bb64 100644 --- a/src/destructure.jl +++ b/src/destructure.jl @@ -91,7 +91,7 @@ _getat(y::AbstractArray, o::Int, flat::AbstractVector) = function _trainable_biwalk(f, x, aux) ch, re = functor(typeof(x), x) - au, _ = functor(typeof(x), aux) + au, _ = functor(aux) _trainmap(f, ch, _trainable(x), au) |> re end @@ -103,7 +103,7 @@ end function _Tangent_biwalk(f, x, aux) # use with prune = NoT ch, re = functor(typeof(x), x) - au, _ = functor(typeof(x), aux) + au, _ = functor(aux) y = _trainmap(f, ch, _trainable(x), au) y isa Tuple{} && return NoT p = ProjectTo(x) @@ -126,7 +126,7 @@ ChainRulesCore.@non_differentiable _zero(x) function _grad!(x, dx, off, flat::AbstractVector) x′, _ = functor(typeof(x), x) dx′, _ = functor(typeof(x), base(dx)) - off′, _ = functor(typeof(x), off) + off′, _ = functor(off) foreach((xᵢ, dxᵢ, oᵢ) -> _grad!(xᵢ, dxᵢ, oᵢ, flat), x′, dx′, off′) flat end diff --git a/test/destructure.jl b/test/destructure.jl index 043315b3..fe5699cb 100644 --- a/test/destructure.jl +++ b/test/destructure.jl @@ -49,7 +49,7 @@ m9 = (a = m1, b = mat, c = [mat, m1]) m8′ = destructure(m8)[2](1:5) @test m8′[1].x === m8′[1].y @test m8′[2].b.y === false - @test m8′[3][1] == [5.0] + @test m8′[3][1] == [5.0] # broken m9′ = destructure(m9)[2](10:10:70) @test m9′.b === m9′.c[1] @@ -79,7 +79,7 @@ end g8 = gradient(m -> sum(abs2, destructure(m)[1]), m8)[1] @test g8[1].x == [2,4,6] @test g8[2].b.x == [8] - @test g8[3] == [[10.0]] + @test g8[3] == [[10.0]] # fails g9 = gradient(m -> sum(sqrt, destructure(m)[1]), m9)[1] @test g9.c === nothing @@ -130,7 +130,7 @@ end v8, re8 = destructure(m8) @test gradient(x -> sum(abs2, re8(x)[1].y), v8)[1] == [2,4,6,0,0] - @test gradient(x -> only(sum(re8(x)[3]))^2, v8)[1] == [0,0,0,0,10] + @test gradient(x -> only(sum(re8(x)[3]))^2, v8)[1] == [0,0,0,0,10] # fails re9 = destructure(m9)[2] @test gradient(x -> sum(abs2, re9(x).c[1]), 1:7)[1] == [0,0,0, 8,10,12,14] @@ -180,3 +180,44 @@ end 4(sum(m.x) + sum(m.y)) + 13*sum(m.z) # again two gradients are ===, so it eliminates one end == ([17,17,4,4],) # Flux gave ([4.0, 4.0, 13.0, 13.0],) end + +@testset "issue 62" begin + # Flux.Chain used to have children which aren't its own fields, which Skip immitates. + + sk = Skip([1.0, 2.0], (x=3, y=[4.0, 5.0])) + @test fmap(identity, sk) == sk + + gk = gradient(x -> sum(x[2].y), sk)[1] + @test fmap(Zygote.accum, sk, gk) isa Skip # this relies on functor(typeof(x), dx) + + st = fmapstructure(identity, sk) + @test st isa Tuple{Vector, NamedTuple} + @test_throws Exception fmap(+, sk, st) # this fails because of functor(typeof(x), dx) + + v, re = destructure(sk) + @test v == [1,2,4,5] + @test re(10v) isa Skip + @test re(10v)[1] == [10, 20] + + @test gradient(zero(v)) do w + re(w)[2].y[1] + end == ([0,0,1,0],) + + # gradient(sk) do x + # w, _ = destructure(x) + # w[1] + # end +#= + +ERROR: ArgumentError: Tangent for the primal Skip{Tuple{Vector{Float64}, NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}}} should be backed by a NamedTuple type, not by Tuple{Vector{Float64}, ChainRulesCore.Tangent{NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}, NamedTuple{(:x, :y), Tuple{ChainRulesCore.NoTangent, Vector{Float64}}}}}. +Stacktrace: + [1] _backing_error(P::Type, G::Type, E::Type) + @ ChainRulesCore ~/.julia/packages/ChainRulesCore/RbX5a/src/tangent_types/tangent.jl:62 + [2] ChainRulesCore.Tangent{Skip{Tuple{Vector{Float64}, NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}}}, Tuple{Vector{Float64}, ChainRulesCore.Tangent{NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}, NamedTuple{(:x, :y), Tuple{ChainRulesCore.NoTangent, Vector{Float64}}}}}}(backing::Tuple{Vector{Float64}, ChainRulesCore.Tangent{NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}, NamedTuple{(:x, :y), Tuple{ChainRulesCore.NoTangent, Vector{Float64}}}}}) + @ ChainRulesCore ~/.julia/packages/ChainRulesCore/RbX5a/src/tangent_types/tangent.jl:36 + [3] _Tangent_biwalk(f::Function, x::Skip{Tuple{Vector{Float64}, NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}}}, aux::Tuple{Int64, NamedTuple{(:x, :y), Tuple{Tuple{}, Int64}}}) + @ Optimisers ~/.julia/dev/Optimisers/src/destructure.jl:116 + +=# + +end diff --git a/test/runtests.jl b/test/runtests.jl index d47bce08..1a54c5e4 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -13,6 +13,13 @@ struct TwoThirds a; b; c; end Functors.@functor TwoThirds (a, c) Optimisers.trainable(x::TwoThirds) = (a = x.a,) +struct Skip{T} # like Flux 0.12's Chain + layers::T + Skip(ls...) = new{typeof(ls)}(ls) +end +Base.getindex(x::Skip, i::Integer) = x.layers[i] +Functors.functor(::Type{<:Skip}, x) = x.layers, ls -> Skip(ls...) + @testset verbose=true "Optimisers.jl" begin @testset verbose=true "Features" begin @@ -165,6 +172,16 @@ Optimisers.trainable(x::TwoThirds) = (a = x.a,) @test_throws ArgumentError Optimisers.setup(ADAMW(), m2) end + @testset "issue 62" begin + m62 = (s = Skip([1.0, 2.0], Foo([3.0], false)), t = [4.0, 5.0]) + s62 = Optimisers.setup(Descent(), m62) + g62 = gradient(m -> m.s[2].x[1] + 3 * m.t[2], m62) + s, m = Optimisers.update(s62, m62, g62...) + @test m.s isa Skip + @test m.s[2].x ≈ [2.9] + @test m.t ≈ [4, 4.7] + end + end @testset verbose=true "Destructure" begin include("destructure.jl") From 81e41fe69eb550e618cf4e5b9639962d5d048d9f Mon Sep 17 00:00:00 2001 From: Michael Abbott <32575566+mcabbott@users.noreply.github.com> Date: Fri, 25 Mar 2022 22:29:14 -0400 Subject: [PATCH 2/7] next idea --- src/destructure.jl | 9 ++++++--- test/destructure.jl | 12 ++++++------ 2 files changed, 12 insertions(+), 9 deletions(-) diff --git a/src/destructure.jl b/src/destructure.jl index 15a4bb64..36928134 100644 --- a/src/destructure.jl +++ b/src/destructure.jl @@ -91,10 +91,13 @@ _getat(y::AbstractArray, o::Int, flat::AbstractVector) = function _trainable_biwalk(f, x, aux) ch, re = functor(typeof(x), x) - au, _ = functor(aux) + au = _aux_children(aux) _trainmap(f, ch, _trainable(x), au) |> re end +_aux_children(off) = functor(off)[1] +_aux_children(off::AbstractArray) = off # leaflike according to Functors, but we need to see each offset + function _trainmap(f, ch, tr, aux) map(ch, tr, aux) do c, t, a # isnothing(t) indicates non-trainable field, safe given isnumeric(c) isnothing(t) ? c : f(t, a) @@ -103,7 +106,7 @@ end function _Tangent_biwalk(f, x, aux) # use with prune = NoT ch, re = functor(typeof(x), x) - au, _ = functor(aux) + au = _aux_children(aux) y = _trainmap(f, ch, _trainable(x), au) y isa Tuple{} && return NoT p = ProjectTo(x) @@ -126,7 +129,7 @@ ChainRulesCore.@non_differentiable _zero(x) function _grad!(x, dx, off, flat::AbstractVector) x′, _ = functor(typeof(x), x) dx′, _ = functor(typeof(x), base(dx)) - off′, _ = functor(off) + off′ = _aux_children(off) foreach((xᵢ, dxᵢ, oᵢ) -> _grad!(xᵢ, dxᵢ, oᵢ, flat), x′, dx′, off′) flat end diff --git a/test/destructure.jl b/test/destructure.jl index fe5699cb..df1ecffb 100644 --- a/test/destructure.jl +++ b/test/destructure.jl @@ -49,7 +49,7 @@ m9 = (a = m1, b = mat, c = [mat, m1]) m8′ = destructure(m8)[2](1:5) @test m8′[1].x === m8′[1].y @test m8′[2].b.y === false - @test m8′[3][1] == [5.0] # broken + @test m8′[3][1] == [5.0] m9′ = destructure(m9)[2](10:10:70) @test m9′.b === m9′.c[1] @@ -130,7 +130,7 @@ end v8, re8 = destructure(m8) @test gradient(x -> sum(abs2, re8(x)[1].y), v8)[1] == [2,4,6,0,0] - @test gradient(x -> only(sum(re8(x)[3]))^2, v8)[1] == [0,0,0,0,10] # fails + @test gradient(x -> only(sum(re8(x)[3]))^2, v8)[1] == [0,0,0,0,10] re9 = destructure(m9)[2] @test gradient(x -> sum(abs2, re9(x).c[1]), 1:7)[1] == [0,0,0, 8,10,12,14] @@ -203,10 +203,10 @@ end re(w)[2].y[1] end == ([0,0,1,0],) - # gradient(sk) do x - # w, _ = destructure(x) - # w[1] - # end + gradient(sk) do x + w, _ = destructure(x) + w[1] + end #= ERROR: ArgumentError: Tangent for the primal Skip{Tuple{Vector{Float64}, NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}}} should be backed by a NamedTuple type, not by Tuple{Vector{Float64}, ChainRulesCore.Tangent{NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}, NamedTuple{(:x, :y), Tuple{ChainRulesCore.NoTangent, Vector{Float64}}}}}. From 6a0ba9f259778a22728be529c0f6da6bb24164f4 Mon Sep 17 00:00:00 2001 From: Jonathan Doucette Date: Wed, 20 Apr 2022 23:47:19 -0700 Subject: [PATCH 3/7] `Offset` wrapper to avoid confusing `isleaf` with `AbstractArray{Int}`s of offsets (also simplifying `_aux_children`); fix broken test for issue #62 --- src/destructure.jl | 22 +++++++++++++--------- test/destructure.jl | 6 +++--- 2 files changed, 16 insertions(+), 12 deletions(-) diff --git a/src/destructure.jl b/src/destructure.jl index e114ff1e..b7f82c2f 100644 --- a/src/destructure.jl +++ b/src/destructure.jl @@ -53,16 +53,20 @@ end Base.show(io::IO, re::Restructure{T}) where T = print(io, "Restructure(", T.name.name, ", ..., ", re.length, ")") Base.length(re::Restructure) = re.length +struct Offset + i::Int +end + # This flattens a model, and returns a web of offsets for later use: function _flatten(x) - isnumeric(x) && return vcat(_vec(x)), 0, length(x) # trivial case + isnumeric(x) && return vcat(_vec(x)), Offset(0), length(x) # trivial case arrays = AbstractVector[] len = Ref(0) off = fmap(x; exclude = isnumeric, walk = (f, z) -> map(f, _trainable(z))) do y push!(arrays, _vec(y)) o = len[] len[] = o + length(y) - o + Offset(o) end reduce(vcat, arrays), off, len[] end @@ -85,9 +89,9 @@ function _rebuild(x, off, flat::AbstractVector, len = length(flat); walk = _trai end end -_getat(y::Number, o::Int, flat::AbstractVector) = ProjectTo(y)(flat[o + 1]) -_getat(y::AbstractArray, o::Int, flat::AbstractVector) = - ProjectTo(y)(reshape(flat[o .+ (1:length(y))], axes(y))) # ProjectTo is just correcting eltypes +_getat(y::Number, off::Offset, flat::AbstractVector) = ProjectTo(y)(flat[off.i + 1]) +_getat(y::AbstractArray, off::Offset, flat::AbstractVector) = + ProjectTo(y)(reshape(flat[off.i .+ (1:length(y))], axes(y))) # ProjectTo is just correcting eltypes function _trainable_biwalk(f, x, aux) ch, re = functor(typeof(x), x) @@ -96,7 +100,6 @@ function _trainable_biwalk(f, x, aux) end _aux_children(off) = functor(off)[1] -_aux_children(off::AbstractArray) = off # leaflike according to Functors, but we need to see each offset function _trainmap(f, ch, tr, aux) map(ch, tr, aux) do c, t, a # isnothing(t) indicates non-trainable field, safe given isnumeric(c) @@ -113,6 +116,7 @@ function _Tangent_biwalk(f, x, aux) # use with prune = NoT if p isa ProjectTo # e.g. Array, NamedTuple p(y) else # p === identity for unknown structs + y = backing(re(y)) # extract NamedTuple backing from re(y); required if x has children which aren't its own fields Tangent{typeof(x), typeof(y)}(y) end end @@ -135,17 +139,17 @@ function _grad!(x, dx, off, flat::AbstractVector) end flat end -function _grad!(x, dx, off::Integer, flat::AbstractVector{T}) where T +function _grad!(x, dx, off::Offset, flat::AbstractVector{T}) where T dx_un = unthunk(dx) T2 = promote_type(T, eltype(dx_un)) if T != T2 # then we must widen the type flat = copyto!(similar(flat, T2), flat) end - @views flat[off .+ (1:length(x))] .+= vec(dx_un) # must visit all tied nodes + @views flat[off.i .+ (1:length(x))] .+= vec(dx_un) # must visit all tied nodes flat end _grad!(x, dx::Zero, off, flat::AbstractVector) = flat -_grad!(x, dx::Zero, off::Integer, flat::AbstractVector) = flat # ambiguity +_grad!(x, dx::Zero, off::Offset, flat::AbstractVector) = flat # ambiguity # These are only needed for 2nd derivatives: function ChainRulesCore.rrule(::typeof(_grad!), x, dx, off, flat) diff --git a/test/destructure.jl b/test/destructure.jl index 76a71011..5afbc746 100644 --- a/test/destructure.jl +++ b/test/destructure.jl @@ -203,10 +203,10 @@ end re(w)[2].y[1] end == ([0,0,1,0],) - gradient(sk) do x + @test gradient(sk) do x w, _ = destructure(x) - w[1] - end + w[1] + w[4] + end == ((layers = ([1.0, 0.0], (x = nothing, y = [0.0, 1.0])),),) #= ERROR: ArgumentError: Tangent for the primal Skip{Tuple{Vector{Float64}, NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}}} should be backed by a NamedTuple type, not by Tuple{Vector{Float64}, ChainRulesCore.Tangent{NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}, NamedTuple{(:x, :y), Tuple{ChainRulesCore.NoTangent, Vector{Float64}}}}}. From 927e095ae1f4742a27cc0710132ea1000ad1e20e Mon Sep 17 00:00:00 2001 From: Jonathan Doucette Date: Fri, 22 Apr 2022 11:01:18 -0700 Subject: [PATCH 4/7] test no longer fails; offset structure is not leaflike using `Offset` wrapper --- test/destructure.jl | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/test/destructure.jl b/test/destructure.jl index 5afbc746..a303a485 100644 --- a/test/destructure.jl +++ b/test/destructure.jl @@ -79,7 +79,7 @@ end g8 = gradient(m -> sum(abs2, destructure(m)[1]), m8)[1] @test g8[1].x == [2,4,6] @test g8[2].b.x == [8] - @test g8[3] == [[10.0]] # fails + @test g8[3] == [[10.0]] g9 = gradient(m -> sum(sqrt, destructure(m)[1]), m9)[1] @test g9.c === nothing From ba909d238cb020070b28aa1f4c6b775c4b3c7785 Mon Sep 17 00:00:00 2001 From: Jonathan Doucette Date: Fri, 22 Apr 2022 14:05:56 -0700 Subject: [PATCH 5/7] delete error message for gradient of `destructure`, which is working now --- test/destructure.jl | 12 ------------ 1 file changed, 12 deletions(-) diff --git a/test/destructure.jl b/test/destructure.jl index a303a485..9740b495 100644 --- a/test/destructure.jl +++ b/test/destructure.jl @@ -207,18 +207,6 @@ end w, _ = destructure(x) w[1] + w[4] end == ((layers = ([1.0, 0.0], (x = nothing, y = [0.0, 1.0])),),) -#= - -ERROR: ArgumentError: Tangent for the primal Skip{Tuple{Vector{Float64}, NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}}} should be backed by a NamedTuple type, not by Tuple{Vector{Float64}, ChainRulesCore.Tangent{NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}, NamedTuple{(:x, :y), Tuple{ChainRulesCore.NoTangent, Vector{Float64}}}}}. -Stacktrace: - [1] _backing_error(P::Type, G::Type, E::Type) - @ ChainRulesCore ~/.julia/packages/ChainRulesCore/RbX5a/src/tangent_types/tangent.jl:62 - [2] ChainRulesCore.Tangent{Skip{Tuple{Vector{Float64}, NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}}}, Tuple{Vector{Float64}, ChainRulesCore.Tangent{NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}, NamedTuple{(:x, :y), Tuple{ChainRulesCore.NoTangent, Vector{Float64}}}}}}(backing::Tuple{Vector{Float64}, ChainRulesCore.Tangent{NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}, NamedTuple{(:x, :y), Tuple{ChainRulesCore.NoTangent, Vector{Float64}}}}}) - @ ChainRulesCore ~/.julia/packages/ChainRulesCore/RbX5a/src/tangent_types/tangent.jl:36 - [3] _Tangent_biwalk(f::Function, x::Skip{Tuple{Vector{Float64}, NamedTuple{(:x, :y), Tuple{Int64, Vector{Float64}}}}}, aux::Tuple{Int64, NamedTuple{(:x, :y), Tuple{Tuple{}, Int64}}}) - @ Optimisers ~/.julia/dev/Optimisers/src/destructure.jl:116 - -=# end @testset "DiffEqFlux issue 699" begin From abf87388b694463c5d299a2f9ce1dbf44a89bcab Mon Sep 17 00:00:00 2001 From: Jonathan Doucette Date: Fri, 22 Apr 2022 14:12:09 -0700 Subject: [PATCH 6/7] remove `_aux_children` --- src/destructure.jl | 8 +++----- 1 file changed, 3 insertions(+), 5 deletions(-) diff --git a/src/destructure.jl b/src/destructure.jl index b7f82c2f..5fdb9e8e 100644 --- a/src/destructure.jl +++ b/src/destructure.jl @@ -95,12 +95,10 @@ _getat(y::AbstractArray, off::Offset, flat::AbstractVector) = function _trainable_biwalk(f, x, aux) ch, re = functor(typeof(x), x) - au = _aux_children(aux) + au, _ = functor(aux) _trainmap(f, ch, _trainable(x), au) |> re end -_aux_children(off) = functor(off)[1] - function _trainmap(f, ch, tr, aux) map(ch, tr, aux) do c, t, a # isnothing(t) indicates non-trainable field, safe given isnumeric(c) isnothing(t) ? c : f(t, a) @@ -109,7 +107,7 @@ end function _Tangent_biwalk(f, x, aux) # use with prune = NoT ch, re = functor(typeof(x), x) - au = _aux_children(aux) + au, _ = functor(aux) y = _trainmap(f, ch, _trainable(x), au) y isa Tuple{} && return NoT p = ProjectTo(x) @@ -133,7 +131,7 @@ ChainRulesCore.@non_differentiable _zero(x) function _grad!(x, dx, off, flat::AbstractVector) x′, _ = functor(typeof(x), x) dx′, _ = functor(typeof(x), base(dx)) - off′ = _aux_children(off) + off′, _ = functor(off) for (xᵢ, dxᵢ, oᵢ) in zip(x′, dx′, off′) flat = _grad!(xᵢ, dxᵢ, oᵢ, flat) end From 415b5971ad90ff3ac2eecfb2edb40703fee5e36f Mon Sep 17 00:00:00 2001 From: Jonathan Doucette Date: Sat, 30 Apr 2022 21:31:24 -0700 Subject: [PATCH 7/7] modified `_trainmap` which returns `NoT` for `functor`-ed values which are not `trainable`; filter primal values from `backing(re(y))` --- src/destructure.jl | 10 ++++++++-- test/destructure.jl | 10 ++++++++-- 2 files changed, 16 insertions(+), 4 deletions(-) diff --git a/src/destructure.jl b/src/destructure.jl index 5fdb9e8e..49f73ed1 100644 --- a/src/destructure.jl +++ b/src/destructure.jl @@ -108,13 +108,19 @@ end function _Tangent_biwalk(f, x, aux) # use with prune = NoT ch, re = functor(typeof(x), x) au, _ = functor(aux) - y = _trainmap(f, ch, _trainable(x), au) + y = map(ch, _trainable(x), au) do c, t, a # isnothing(t) indicates non-trainable field, safe given isnumeric(c) + isnothing(t) ? NoT : f(t, a) + end y isa Tuple{} && return NoT p = ProjectTo(x) if p isa ProjectTo # e.g. Array, NamedTuple p(y) else # p === identity for unknown structs - y = backing(re(y)) # extract NamedTuple backing from re(y); required if x has children which aren't its own fields + y = map(backing(x), backing(re(y))) do c, t + # backing(re(y)) extracts NamedTuple backing from re(y); required if x has children which aren't its own fields + # however, re(y) will repopulate primal field values from x which weren't functor-ed; these gradients should be NoT + c === t ? NoT : t + end Tangent{typeof(x), typeof(y)}(y) end end diff --git a/test/destructure.jl b/test/destructure.jl index 9740b495..fce4ceeb 100644 --- a/test/destructure.jl +++ b/test/destructure.jl @@ -205,8 +205,14 @@ end @test gradient(sk) do x w, _ = destructure(x) - w[1] + w[4] - end == ((layers = ([1.0, 0.0], (x = nothing, y = [0.0, 1.0])),),) + w[1]^2 + w[4]^2 + end == ((layers = ([2.0, 0.0], (x = nothing, y = [0.0, 10.0])),),) + + ac = TwoThirds([1.0, 2.0], [3.0], [4.0, 5.0]) # a,c are functor-ed, and only a is trainable + @test gradient(ac) do x + w2, _ = destructure(x) + w2[2]^2 + end == ((a = [0.0, 4.0], b = nothing, c = nothing),) end @testset "DiffEqFlux issue 699" begin