From 20b79e0bdf8e7667b645d861cbe1223e58a93b46 Mon Sep 17 00:00:00 2001 From: ayush-1506 Date: Wed, 1 May 2019 21:37:25 +0530 Subject: [PATCH 1/7] added crosscor --- NEWS.md | 1 + src/Flux.jl | 2 +- src/layers/conv.jl | 70 +++++++++++++++++++++++++++++++++++++++++++++ test/cuda/cuda.jl | 4 +++ test/layers/conv.jl | 21 ++++++++++++++ 5 files changed, 97 insertions(+), 1 deletion(-) diff --git a/NEWS.md b/NEWS.md index 540ef72655..4e45bbae95 100644 --- a/NEWS.md +++ b/NEWS.md @@ -13,6 +13,7 @@ * [Data.Iris](https://github.com/FluxML/Flux.jl/pull/652) makes Fisher's Iris dataset available with `Iris.labels` and `Iris.features`. * New [InstanceNorm](https://github.com/FluxML/Flux.jl/pull/634), as popularized by [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022). * New [GroupNorm](https://github.com/FluxML/Flux.jl/pull/696), as described in [Group Normalization](https://arxiv.org/abs/1803.08494). +* New [CrossCor](https://github.com/FluxML/Flux.jl/pull/762). AD Changes: diff --git a/src/Flux.jl b/src/Flux.jl index eccdd6a7e5..a041a69a8d 100644 --- a/src/Flux.jl +++ b/src/Flux.jl @@ -6,7 +6,7 @@ using Base: tail using MacroTools, Juno, Requires, Reexport, Statistics, Random using MacroTools: @forward -export Chain, Dense, Maxout, RNN, LSTM, GRU, Conv, ConvTranspose, MaxPool, MeanPool, +export Chain, Dense, Maxout, RNN, LSTM, GRU, Conv, CrossCor, ConvTranspose, MaxPool, MeanPool, DepthwiseConv, Dropout, AlphaDropout, LayerNorm, BatchNorm, InstanceNorm, GroupNorm, params, mapleaves, cpu, gpu, f32, f64 diff --git a/src/layers/conv.jl b/src/layers/conv.jl index a59a8c6a6a..a89d287cae 100644 --- a/src/layers/conv.jl +++ b/src/layers/conv.jl @@ -198,6 +198,76 @@ end (a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} = a(T.(x)) +""" + CrossCor(size, in=>out) + CrossCor(size, in=>out, relu) + +Standard cross convolutional layer. `size` should be a tuple like `(2, 2)`. +`in` and `out` specify the number of input and output channels respectively. + +Example: Applying CrossCor layer to a 1-channel input using a 2x2 window size, + giving us a 16-channel output. Output is activated with ReLU. + + size = (2,2) + in = 1 + out = 16 + CrossCor((2, 2), 1=>16, relu) + +Data should be stored in WHCN order (width, height, # channels, # batches). +In other words, a 100×100 RGB image would be a `100×100×3×1` array, +and a batch of 50 would be a `100×100×3×50` array. + +Takes the keyword arguments `pad`, `stride` and `dilation`. +""" +struct CrossCor{N,M,F,A,V} + σ::F + weight::A + bias::V + stride::NTuple{N,Int} + pad::NTuple{M,Int} + dilation::NTuple{N,Int} +end + +function CrossCor(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity; + stride = 1, pad = 0, dilation = 1) where {T,N} + stride = expand(Val(N-2), stride) + pad = expand(Val(2*(N-2)), pad) + dilation = expand(Val(N-2), dilation) + return CrossCor(σ, w, b, stride, pad, dilation) +end + +CrossCor(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; + init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N = + CrossCor(param(init(k..., ch...)), param(zeros(ch[2])), σ, + stride = stride, pad = pad, dilation = dilation) + +@treelike CrossCor + +function crosscor(x, w, ddims::DenseConvDims) + ddims = DenseConvDims(ddims, F=true) + return conv(x, w, ddims) +end + +function (c::CrossCor)(x::AbstractArray) + # TODO: breaks gpu broadcast :( + # ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1))) + σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1) + cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation) + σ.(crosscor(x, c.weight, cdims) .+ b) +end + +function Base.show(io::IO, l::CrossCor) + print(io, "CrossCor(", size(l.weight)[1:ndims(l.weight)-2]) + print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight))) + l.σ == identity || print(io, ", ", l.σ) + print(io, ")") +end + +(a::CrossCor{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} = + invoke(a, Tuple{AbstractArray}, x) + +(a::CrossCor{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} = + a(T.(x)) """ MaxPool(k) diff --git a/test/cuda/cuda.jl b/test/cuda/cuda.jl index 86e7f2f3b8..96d04c284b 100644 --- a/test/cuda/cuda.jl +++ b/test/cuda/cuda.jl @@ -36,6 +36,10 @@ c = gpu(Conv((2,2),3=>4)) l = c(gpu(rand(10,10,3,2))) Flux.back!(sum(l)) +c = gpu(CrossCor((2,2),3=>4)) +l = c(gpu(rand(10,10,3,2))) +Flux.back!(sum(l)) + end @testset "onecold gpu" begin diff --git a/test/layers/conv.jl b/test/layers/conv.jl index 6995890893..4bc70c226b 100644 --- a/test/layers/conv.jl +++ b/test/layers/conv.jl @@ -61,3 +61,24 @@ end x_hat = ConvTranspose((3, 3), 1 => 1)(y) @test size(x_hat) == size(x) end + +@testset "CrossCor" begin + x = rand(Float32, 28, 28, 1, 1) + w = rand(2,2,1,1) + y = CrossCor(w, [0.0]) + x_pred = y(x) + + @test sum(w .* x[1:2, 1:2, :, :]) == x_pred[1, 1, 1, 1] + + r = zeros(Float32, 28, 28, 1, 5) + m = Chain( + CrossCor((2, 2), 1=>16, relu), + MaxPool((2,2)), + CrossCor((2, 2), 16=>8, relu), + MaxPool((2,2)), + x -> reshape(x, :, size(x, 4)), + Dense(288, 10), softmax) + + @test size(m(r)) == (10, 5) + +end From 99d07e67db1c33f18fba834a2449809949bfd44e Mon Sep 17 00:00:00 2001 From: ayush-1506 Date: Thu, 9 May 2019 16:43:28 +0530 Subject: [PATCH 2/7] another small test --- test/layers/conv.jl | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/test/layers/conv.jl b/test/layers/conv.jl index e789a252e6..663ea70f2c 100644 --- a/test/layers/conv.jl +++ b/test/layers/conv.jl @@ -66,9 +66,8 @@ end x = rand(Float32, 28, 28, 1, 1) w = rand(2,2,1,1) y = CrossCor(w, [0.0]) - x_pred = y(x) - @test sum(w .* x[1:2, 1:2, :, :]) == x_pred[1, 1, 1, 1] + @test sum(w .* x[1:2, 1:2, :, :]) == y(x)[1, 1, 1, 1] r = zeros(Float32, 28, 28, 1, 5) m = Chain( @@ -80,6 +79,8 @@ end Dense(288, 10), softmax) @test size(m(r)) == (10, 5) + @test y(x) != Conv(w, [0.0])(x) + @test CrossCor(w[end:-1:1, end:-1:1, :, :], [0.0])(x) == Conv(w, [0.0])(x) end @testset "Conv with non quadratic window #700" begin From 451b80da3d5949a91d449183b164a593073ed3d1 Mon Sep 17 00:00:00 2001 From: ayush-1506 Date: Tue, 14 May 2019 02:50:18 -0700 Subject: [PATCH 3/7] add to layer docs --- docs/src/models/layers.md | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/src/models/layers.md b/docs/src/models/layers.md index ec45c31e7b..3acb910ddb 100644 --- a/docs/src/models/layers.md +++ b/docs/src/models/layers.md @@ -17,6 +17,7 @@ MaxPool MeanPool DepthwiseConv ConvTranspose +CrossCor ``` ## Recurrent Layers From 2161163a82a74a03154664aa67361d7857f01ff6 Mon Sep 17 00:00:00 2001 From: ayush-1506 Date: Wed, 1 May 2019 21:37:25 +0530 Subject: [PATCH 4/7] added crosscor --- NEWS.md | 1 + src/Flux.jl | 2 +- src/layers/conv.jl | 70 +++++++++++++++++++++++++++++++++++++++++++++ test/cuda/cuda.jl | 4 +++ test/layers/conv.jl | 19 ++++++++++++ 5 files changed, 95 insertions(+), 1 deletion(-) diff --git a/NEWS.md b/NEWS.md index 8ac937cee0..f01f12598c 100644 --- a/NEWS.md +++ b/NEWS.md @@ -17,6 +17,7 @@ * [Data.Iris](https://github.com/FluxML/Flux.jl/pull/652) makes Fisher's Iris dataset available with `Iris.labels` and `Iris.features`. * New [InstanceNorm](https://github.com/FluxML/Flux.jl/pull/634), as popularized by [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022). * New [GroupNorm](https://github.com/FluxML/Flux.jl/pull/696), as described in [Group Normalization](https://arxiv.org/abs/1803.08494). +* New [CrossCor](https://github.com/FluxML/Flux.jl/pull/762). AD Changes: diff --git a/src/Flux.jl b/src/Flux.jl index eccdd6a7e5..a041a69a8d 100644 --- a/src/Flux.jl +++ b/src/Flux.jl @@ -6,7 +6,7 @@ using Base: tail using MacroTools, Juno, Requires, Reexport, Statistics, Random using MacroTools: @forward -export Chain, Dense, Maxout, RNN, LSTM, GRU, Conv, ConvTranspose, MaxPool, MeanPool, +export Chain, Dense, Maxout, RNN, LSTM, GRU, Conv, CrossCor, ConvTranspose, MaxPool, MeanPool, DepthwiseConv, Dropout, AlphaDropout, LayerNorm, BatchNorm, InstanceNorm, GroupNorm, params, mapleaves, cpu, gpu, f32, f64 diff --git a/src/layers/conv.jl b/src/layers/conv.jl index 3739fd1c34..ff547b410b 100644 --- a/src/layers/conv.jl +++ b/src/layers/conv.jl @@ -198,6 +198,76 @@ end (a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} = a(T.(x)) +""" + CrossCor(size, in=>out) + CrossCor(size, in=>out, relu) + +Standard cross convolutional layer. `size` should be a tuple like `(2, 2)`. +`in` and `out` specify the number of input and output channels respectively. + +Example: Applying CrossCor layer to a 1-channel input using a 2x2 window size, + giving us a 16-channel output. Output is activated with ReLU. + + size = (2,2) + in = 1 + out = 16 + CrossCor((2, 2), 1=>16, relu) + +Data should be stored in WHCN order (width, height, # channels, # batches). +In other words, a 100×100 RGB image would be a `100×100×3×1` array, +and a batch of 50 would be a `100×100×3×50` array. + +Takes the keyword arguments `pad`, `stride` and `dilation`. +""" +struct CrossCor{N,M,F,A,V} + σ::F + weight::A + bias::V + stride::NTuple{N,Int} + pad::NTuple{M,Int} + dilation::NTuple{N,Int} +end + +function CrossCor(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity; + stride = 1, pad = 0, dilation = 1) where {T,N} + stride = expand(Val(N-2), stride) + pad = expand(Val(2*(N-2)), pad) + dilation = expand(Val(N-2), dilation) + return CrossCor(σ, w, b, stride, pad, dilation) +end + +CrossCor(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; + init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N = + CrossCor(param(init(k..., ch...)), param(zeros(ch[2])), σ, + stride = stride, pad = pad, dilation = dilation) + +@treelike CrossCor + +function crosscor(x, w, ddims::DenseConvDims) + ddims = DenseConvDims(ddims, F=true) + return conv(x, w, ddims) +end + +function (c::CrossCor)(x::AbstractArray) + # TODO: breaks gpu broadcast :( + # ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1))) + σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1) + cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation) + σ.(crosscor(x, c.weight, cdims) .+ b) +end + +function Base.show(io::IO, l::CrossCor) + print(io, "CrossCor(", size(l.weight)[1:ndims(l.weight)-2]) + print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight))) + l.σ == identity || print(io, ", ", l.σ) + print(io, ")") +end + +(a::CrossCor{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} = + invoke(a, Tuple{AbstractArray}, x) + +(a::CrossCor{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} = + a(T.(x)) """ MaxPool(k) diff --git a/test/cuda/cuda.jl b/test/cuda/cuda.jl index 86e7f2f3b8..96d04c284b 100644 --- a/test/cuda/cuda.jl +++ b/test/cuda/cuda.jl @@ -36,6 +36,10 @@ c = gpu(Conv((2,2),3=>4)) l = c(gpu(rand(10,10,3,2))) Flux.back!(sum(l)) +c = gpu(CrossCor((2,2),3=>4)) +l = c(gpu(rand(10,10,3,2))) +Flux.back!(sum(l)) + end @testset "onecold gpu" begin diff --git a/test/layers/conv.jl b/test/layers/conv.jl index 5e12e42668..13fc7b763b 100644 --- a/test/layers/conv.jl +++ b/test/layers/conv.jl @@ -80,4 +80,23 @@ end randn(Float32, 10,10,1,1) |> Conv((6,1), 1=>1, Flux.σ) true end +@testset "CrossCor" begin + x = rand(Float32, 28, 28, 1, 1) + w = rand(2,2,1,1) + y = CrossCor(w, [0.0]) + x_pred = y(x) + + @test sum(w .* x[1:2, 1:2, :, :]) == x_pred[1, 1, 1, 1] + + r = zeros(Float32, 28, 28, 1, 5) + m = Chain( + CrossCor((2, 2), 1=>16, relu), + MaxPool((2,2)), + CrossCor((2, 2), 16=>8, relu), + MaxPool((2,2)), + x -> reshape(x, :, size(x, 4)), + Dense(288, 10), softmax) + + @test size(m(r)) == (10, 5) + end From 0a2e288c3ff02f2694599c85f72a1ec82b7e7f7d Mon Sep 17 00:00:00 2001 From: ayush-1506 Date: Thu, 9 May 2019 16:43:28 +0530 Subject: [PATCH 5/7] another small test --- test/layers/conv.jl | 21 +++++++++++++++++++++ 1 file changed, 21 insertions(+) diff --git a/test/layers/conv.jl b/test/layers/conv.jl index 13fc7b763b..6e01c4e948 100644 --- a/test/layers/conv.jl +++ b/test/layers/conv.jl @@ -56,6 +56,27 @@ end @test size(x_hat) == size(x) end +@testset "CrossCor" begin + x = rand(Float32, 28, 28, 1, 1) + w = rand(2,2,1,1) + y = CrossCor(w, [0.0]) + + @test sum(w .* x[1:2, 1:2, :, :]) == y(x)[1, 1, 1, 1] + + r = zeros(Float32, 28, 28, 1, 5) + m = Chain( + CrossCor((2, 2), 1=>16, relu), + MaxPool((2,2)), + CrossCor((2, 2), 16=>8, relu), + MaxPool((2,2)), + x -> reshape(x, :, size(x, 4)), + Dense(288, 10), softmax) + + @test size(m(r)) == (10, 5) + @test y(x) != Conv(w, [0.0])(x) + @test CrossCor(w[end:-1:1, end:-1:1, :, :], [0.0])(x) == Conv(w, [0.0])(x) +end + @testset "Conv with non quadratic window #700" begin data = zeros(Float32, 7,7,1,1) data[4,4,1,1] = 1 From f263f0c8edf06f8caebdc8a14810a567bd46665a Mon Sep 17 00:00:00 2001 From: ayush-1506 Date: Tue, 14 May 2019 02:50:18 -0700 Subject: [PATCH 6/7] add to layer docs --- docs/src/models/layers.md | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/src/models/layers.md b/docs/src/models/layers.md index ec45c31e7b..3acb910ddb 100644 --- a/docs/src/models/layers.md +++ b/docs/src/models/layers.md @@ -17,6 +17,7 @@ MaxPool MeanPool DepthwiseConv ConvTranspose +CrossCor ``` ## Recurrent Layers From bfc5bb007950b2361067df250bd9e6c2da238c6b Mon Sep 17 00:00:00 2001 From: ayush-1506 Date: Tue, 14 May 2019 02:53:48 -0700 Subject: [PATCH 7/7] rebase --- test/layers/conv.jl | 19 ------------------- 1 file changed, 19 deletions(-) diff --git a/test/layers/conv.jl b/test/layers/conv.jl index 6e01c4e948..ef09ecae84 100644 --- a/test/layers/conv.jl +++ b/test/layers/conv.jl @@ -101,23 +101,4 @@ end randn(Float32, 10,10,1,1) |> Conv((6,1), 1=>1, Flux.σ) true end -@testset "CrossCor" begin - x = rand(Float32, 28, 28, 1, 1) - w = rand(2,2,1,1) - y = CrossCor(w, [0.0]) - x_pred = y(x) - @test sum(w .* x[1:2, 1:2, :, :]) == x_pred[1, 1, 1, 1] - - r = zeros(Float32, 28, 28, 1, 5) - m = Chain( - CrossCor((2, 2), 1=>16, relu), - MaxPool((2,2)), - CrossCor((2, 2), 16=>8, relu), - MaxPool((2,2)), - x -> reshape(x, :, size(x, 4)), - Dense(288, 10), softmax) - - @test size(m(r)) == (10, 5) - -end