-
Notifications
You must be signed in to change notification settings - Fork 0
/
frame-best-merger.tex
51 lines (51 loc) · 1.61 KB
/
frame-best-merger.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% SPDX-License-Identifier: CC-BY-4.0
% Copyright 2018 Toni Dietze
\documentclass[beamer]{standalone}
\input{preamble.tex}
\title{\jobname}
\begin{document}
\begin{standaloneframe}{\jobname}
\hfill
{\small\tikz{\node[fill=HKS92K20, inner sep=0]{\begin{tabular}{l@{ \ldots{} }l}
\(\mathscr{A}\) & bottom-up deterministic ta \((Q, Σ, I, Δ)\)
\\ \(c\) & corpus over \(\trees{Σ}\)
\\ \(Π\) & set of all bottom-up determinism preserving mergers for \(\mathscr{A}\)
\end{tabular}};}}
\begin{block}{maximize the likelihood (again)}
\[
\argmax_{π ∈ Π} \lklhd{c}{\semantics{\mle[π(\mathscr{A})]{c}}}
\uncover<3->{
=
\argmax_{π ∈ Π}
\frac
{\lklhd{c}{\semantics{\mle[π(\mathscr{A})]{c}}}}
{\lklhd{c}{\semantics{\mle[\mathscr{A}]{c}}}}
}
\]
\end{block}
\vspace*{-1em}
\begin{overprint}
\onslide<2-3>
\begin{block}{combining likelihood and mle}
\[
\lklhd{c}{\semantics{\mle[\mathscr{A}]{c}}}
= \frac
{∏_{q ∈ Q} {c_{\mathscr{A}}^{\mathrm{I}}(q)}^{c_{\mathscr{A}}^{\mathrm{I}}(q)}}
{\corpussize{c}}
· \frac
{∏_{τ ∈ Δ} {c_{\mathscr{A}}^{\mathrm{Δ}}(τ)}^{c_{\mathscr{A}}^{\mathrm{Δ}}(τ)}}
{∏_{q ∈ Q} {c_{\mathscr{A}}^{\mathrm{Q}}(q)}^{c_{\mathscr{A}}^{\mathrm{Q}}(q)}}
\]
\end{block}
\onslide<4>
\begin{block}{}
Assuming every merger
\begin{itemize}
\item does not collapse rules or root states, and
\item preserves bottom-up determinism,
\end{itemize}
it is best to merge the two least frequent non-terminals (w.r.t.\@ \(c_{\mathscr{A}}^{\mathrm{Q}}\)).
\end{block}
\end{overprint}
\end{standaloneframe}
\end{document}