2rkBmTLPzQh?6szV#>GEpprwP+$8OnGOF|^l&IR
zzY057zHz)7cD?j`bl|L_!(Q5yS}Q$(z_F#=`*X-ew@QL#gTXwCiD{OC@*;=VS(t|O
z;2~c6c%nBks5ynx1wwoC+TOFML(#^U^aZ#;ZzH#=DBFsvvx%>@KE1Kg`W@Du7RXhv
zBr@sT!3hc{f>8?CAw`KIn1S+6;vgz;J(U)Ls}Y}*lt(95m#}LBe?AGoEv1rC^6MnU
zd#*;}C77L?>r0+3Cx?w!I|j>|gxulEZt;P85t`?Fju}?L9e2OMu3WUW^tAN(6%snc
z`sn+J^}KijE{hqqayyJ_HS=q%sgj8!-ejndyPAeV>uNO{dJ}}%MFXpSRKUXfXntB9
z3d8^jUav_lza*j$pNTIOKRk-QN$PtnVfox!?{kRYL=@ZE6UDv9ZOZ*oL$ky3g(Kqu
z=zD0_7hYD-9NRJZe6vqOAA5yyJho1u2ik5aEvvh7F*T+S$J
zE*^5x(;G{K@BUa)dKE7v(XEkGfnanV$!Wtn9kk+j_jQg9Ls2kdrn})s0qu~Dm1h~zTTlo9tGt9Tnywq_{;Q~ZuG5BXO*r<2UhMx`&`|}
zByodoLTDy`z3Ue2k0d1xeq6*`F+*sm+%OSEcdlrt(^@v*qM1G^0pRX}0u|o+?F=6x
zq*AJD>5_dxlmiVyPbKKdYNi7=(o>JhoyfHXqo~yDYz~HQpue0yNsDe)(NdeCWh_~(
z)wxI35?F|a-FT;nDasp_E-ZRB_{_bvJ{uDIlDa{-oEaKlrWk|Eps14O?ajChjs|`X
zUr2+2D`|YK1&y1R-`IL>YHEvAz*&C2$EWfHt;tT~Ro6cP{sxK{dM_z@zOtL`mzW&Y
z*dQ}Uwywril5;My1#O5MUz)Y4q+QrnThcHi+|BDE8vJ9amb>Ug-%V}(g#E~Fa6f!y
z5Sv&v%gx{OChcetm+H>Va4??y>EyQ$kN=zqx_v<8;r~X^bz|RS^k!*aly&V0Q`91?
zgZoDt9Z{*f77^io1MBI&5MOqy`k(Op74w5>-Vj6dm11i~xxL=UXusg+_*k3-#hPd7
zin*i@r5N?ntNFE9o?sNkGY6H+sU)JOhk4JM%i?37idrR0kYLc`K1x=0sck~9_*(|z
zja`^goG=&HvLxb;WOM#lgNJMpP3eTOvr*%0KiteowGEo=@dE>ta#A7gVN`zA}+TFX@wv{<9Kl{zpIA15qEQrRo#wvl{hM
zFO7cG&1An3|2i^RJYUW@$Se7Pq@^0)Iuh!Z_tMN(FhgHYH(gsm{UKv3H$K65YJjUp
zOD^2(=&&z*A8PnPk2gVf7raPpVL&A4p`fkUEqG&HzR6!x4j=3VW#sE16odo)ibwg)
z1D}e*a$aJiz1lpSbyId8qOWXys1wL`Z$>P8K{tvm)<*fWnnkzIZ<*#
zK8@t2UAzg0ra#RRC{c@SfL~$`OKhLCuB9L8*2*(aEJ!z}=x>Gmx(vq%
zW;ScxlERX+!W=chnPz>WZCXVAgOf?N+a{m-vB6j;`8RY9T&OKiH}KbOy%2$((%97D
zw3Z9wIVIOL7&8Z3#@bl5!OWya??MaU^rW(upnuidQvAFFiDh|CzXa@rm@Nu5NGA;S>uCrO$F<7H
zU&xwgNIVksN|cDx{Tj?L<>CsP_^6w=p0q=tWHNh(seZ65JLA-BWmFcbets$n<9H=w*)jU2F*^44^=uUE_qssHdqZHfKFuTA`@2x&P;k0-{N
zoG1Hqm6CPlNSnjfamD}IqHbZ!m`_8-V+-&p+4G!*BbH3#)5bAn%T1;?HZF~mxCaaZ
zv(&8+P=q4+qw}XicwY#@9@693r!f}4TWC5eppWAF&i$b^4S%k)HabIxXB;9Zw${uAXt6
z=;;YyO1K$ADlJS0WK)>D^s3T_s4rkSK6NlNY!uySpmg4$qdL}21~!^;?DwE{K|K;)
z2u?!{&JAF$dDI{3wlF78p`Yt`h0GfI6%VVc(`ejpt!k>@5ShM6y2NlI~g_cy6pRzllf9sGmpxMjy-16-prR(_6
zB!RRILh%#~>pZS_ahP)(Pbifci_AC$^InZIs^21~XDJNYzt`@jb!?5eM5hFRu6IaP
zxiViK)muiCuH=RTKj$f@L>~Cyv=IC@-nXJHC?3YnJzoB?|D1sCo3!tw(Qrceujrs?
zA#@zw{H$+?x)%*#PhEGV&99&)V#VDBYn3}wo#_*J!+0dIyZC1XwfTdt{iabfrs+1|
z<(OSl``th-DWjf|MM1{qFq!ZBvVFRiJ?-2j2%m~I+wcMLI+X5R`o;LF(nwbAG@f{P
zu%uM&X=7lRkz$UqhjHSAP)MUF+kUa;ge8@T*3b8~N9YesTl>NVMzu4)Pg^@TC%w~N
za}kWEE0fXLOojv&Wr(pk9bRQ`q?#pRU2m
zHePL4b0F}o4tI7*Hlx&ikTLJEX9~Q(&7A&Qr_s5$8^JK_8WLY%vGPE3$!TY(6Ul0N
z_#(!WGGOCRzs$k~O$WZ|8FuI-oS8|58x}jM6UWufC?kAo8Z
zCS7uT4J2023buR5SC4E$SX$11j)Y}=Q^wE)ET*iQMQ}IKE1HuCh$ZKMGJo`^4t0Uq
zRz#m+8~UTzx$|GoH&fXYwXEG<d#h?ce&>MG=!ek1RgYsg7z4aX~8zf4HUSE#<9
z{rF?WVGU<^S!>d+bT}xRm#_JigJ(F`ta#wn$>{iySO@Hs#ot;dRoHvPJ0^|#ZP$3M
zDxoaQmMbHgj*7P1Vd%YdNlMS}Hzg`OL3v)4X=CWK8C*De{?(5lCGg@u)br2Z!O>T*
z2D3zJ{P4eDyY9n33$<>LO}rO4R#al>nvgnH{P+5(U`#b_*m&Jdg#2Gs}MYV(RAccPz_zhL$~$rTp&so_{Ix?4vspNg&jOE6}%p-Q0`p4HB0YWMhU{*38Y
zd|ms|XgvM}b;D2SBAlD(7S2ysS%`kl(Vp-XgbEIUK!F$C3LIp1F1uw{iDC
zvb}ElLaa^^9vDQ66nlH~tSOqqu*N9f5cS;5`Yto%OSFE72a|o@8cp-&@*$pI*v8MU
zVmX<5SZd;%BaM2wR!()^nnAt7tz%%dS@%^Y(Z4lcos_-TK*m%!r@yOQApcNIg@V=(
zRovts>iX8!-UB3}LrR&TUcV=VJze>8e7n&l?s{7M2;GOl7x5G<22^G$=15?a<
z$B$!2L%n#_cRiatrQ8+$eQlg#1e6hLR|tj%1N4Oc_l7Q&lPwHHV
z!bWWU19Yg_#}!w2HY8n>exMbT7b=%8y{cPxp`IUhyryH7=v;{27v2e4do8ebJLu(0
ztiruO)!2Et3pyOLz7FYT5e
zYnRwR%F8kiiTZU6t(dKosNWEi816a0AWU3S9h0P)Ik~bFLvU>NekkEh3vQ*sZ(IAN
zL7>J|{L}82Q^j|?w^DIo-jIkFJimpb>Subxk_moWniY&Yw|j?W2;C4Y@V3e`AWfh+
zU>&?8D@*j&TisXIazNGS>?PJg(DQNd(3xPB
z;*P5zn~YNGu1#_<$l%*W=Zg6(_YUJD^?GxUh?Oa=lNpWou_9@kV&o27xSSe<#>1^)
zZwhZg5(bR1Ju6sSuZmo15%v#zx=7!-l>|^OoKN%Z<0y6C64@&azmQ-}qJg
zdyhP7O;3FaK8Q&Kt(|cdFR>1^C|Lgl;p(bHY4-mj=eS@qY-b~8_TR7gdKY`nJt4w`
zQ#{TU?2p{{3(cuiW^VEx8g|g(*rWqTbHbLUoslwS9SDrF?UoFq9i~aSi#4F|5$!at
zD#Rdw_hD;Rl|)seZA6*A!S4qJpU6_;=q|Of!ZQ)NdnOf^ycEXX3pbl<}2zSmpW(V+5S||oA~Eg!{oVD
z_C|S)Lqw0HA=VBk<|N}KHPd6?%70v1(uOUNb
zlaFJKGUqWc{g2bLtlmty
zp;iybO8PQRTz!XsrTnb!BBicw6w$FsP$83Ba=lO?`NW>d%O^&@7pZ(W5h{`I&d~17
zdxXFmUCUE58BE&cG02O7is#*J?6;WImfcr*>JnaG#p+^(RSq3&g}wkGndKv#OX3sF
z93hg2)kEcAIIrI=_j^ni)vfQ7qBKpU^c2s#SfUbuoY3iWWdK{Na5GE5H8i1dTk&S#0G=mFTv6hAidw>qa
z9E)eBFD)j3^g$}Og?Za)7eB7w`FG}+kCf~E)bxvkz56A^U#6}8u#13tT@QJ5uplHG
z%glqrxgsMgF~*A(0GLW<@=)NOt=A7$y-4r!N8h2k>J~Z=gJco2LwG^PiQ$0A3OQ>OTh$f+k+BpZ_whw8*+&`d_&X
BI*= 5:
+ acc1, acc5 = accuracy(logits, target, topk=(1, 5))
+ else:
+ acc1, = accuracy(logits, target, topk=(1,))
+ acc5 = float("nan")
+ mean_per_class_recall = balanced_accuracy_score(target, pred)
+ if verbose:
+ print(classification_report(target, pred, digits=3))
+ return {"acc1": acc1, "acc5": acc5, "mean_per_class_recall": mean_per_class_recall}
diff --git a/flagai/auto_model/auto_loader.py b/flagai/auto_model/auto_loader.py
index 71ac1c44..8ecebd6c 100644
--- a/flagai/auto_model/auto_loader.py
+++ b/flagai/auto_model/auto_loader.py
@@ -135,6 +135,8 @@ def __getattr__(self, name):
"AltCLIPProcess"],
"altclip-xlmr-l-m9": ["flagai.models.mm.AltCLIP", "AltCLIP", "altclip", "mm", "flagai.model.mm.AltCLIP",
"AltCLIPProcess"],
+ "altclip-xlmr-l-m18": ["flagai.models.mm.AltCLIP", "AltCLIP", "altclip", "mm", "flagai.model.mm.AltCLIP",
+ "AltCLIPProcess"],
"altclip-bert-b": ["flagai.models.mm.AltCLIP", "AltCLIP", "altclip", "mm", "flagai.model.mm.AltCLIP",
"AltCLIPProcessBert"],
"eva-clip": ["flagai.model.mm.eva_clip_model", "EVA_CLIP", "evaclip", "mm"],
diff --git a/flagai/model/base_model.py b/flagai/model/base_model.py
index c385c52a..2399ed3a 100644
--- a/flagai/model/base_model.py
+++ b/flagai/model/base_model.py
@@ -213,6 +213,7 @@ def load_diffusion_local(yaml_path, only_download_config=False, **kwargs):
def download(cls,
download_path='./checkpoints/',
model_name='RoBERTa-base-ch',
+ only_download_config=False,
**kwargs):
try:
model_id = _get_model_id(model_name)
@@ -227,4 +228,6 @@ def download(cls,
if not file_name.endswith("bin"):
_get_vocab_path(os.path.join(download_path, model_name), file_name, model_id)
else :
+ if only_download_config:
+ continue
_get_checkpoint_path(os.path.join(download_path, model_name), file_name, model_id)
\ No newline at end of file
diff --git a/flagai/model/mm/AltCLIP.py b/flagai/model/mm/AltCLIP.py
index 9757e2ff..a50713a4 100644
--- a/flagai/model/mm/AltCLIP.py
+++ b/flagai/model/mm/AltCLIP.py
@@ -446,7 +446,7 @@ def from_pretrain(cls,
only_download_config=False,
device="cpu",
**kwargs):
- super().download(download_path, model_name)
+ # super().download(download_path, model_name, only_download_config=only_download_config)
pretrained_model_name_or_path = os.path.join(download_path, model_name)
print(pretrained_model_name_or_path)
return CLIPHF.from_pretrained(pretrained_model_name_or_path)
diff --git a/flagai/model/mm/modeling_altclip.py b/flagai/model/mm/modeling_altclip.py
new file mode 100644
index 00000000..ffc9d5ab
--- /dev/null
+++ b/flagai/model/mm/modeling_altclip.py
@@ -0,0 +1,1759 @@
+# coding=utf-8
+# Copyright 2022 The BAAI Teams Authors and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch AltCLIP model."""
+import math
+from dataclasses import dataclass
+from typing import Any, List, Optional, Tuple, Union
+
+import torch
+import torch.nn as nn
+import torch.utils.checkpoint
+
+from transformers.activations import ACT2FN
+from transformers.modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPooling,
+ BaseModelOutputWithPoolingAndCrossAttentions,
+)
+from transformers.modeling_utils import PreTrainedModel
+from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from transformers.utils import ModelOutput, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
+from .configuration_altclip import AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig
+
+
+@dataclass
+class BaseModelOutputWithPoolingAndProjection(ModelOutput):
+ """
+ Base class for model's outputs that also contains a pooling of the last hidden states.
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
+ Last layer hidden-state of the first token of the sequence (classification token) after further processing
+ through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
+ the classification token after processing through a linear layer and a tanh activation function. The linear
+ layer weights are trained from the next sentence prediction (classification) objective during pretraining.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ projection_state (`tuple(torch.FloatTensor)`, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` of shape `(batch_size,config.project_dim)`.
+
+ Text embeddings before the projection layer, used to mimic the last hidden state of the teacher encoder.
+ """
+
+ last_hidden_state: torch.FloatTensor = None
+ penultimate_hidden_state: torch.FloatTensor = None
+ pooler_output: torch.FloatTensor = None
+ pooler_output2: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+ projection_state: Optional[Tuple[torch.FloatTensor]] = None
+
+logger = logging.get_logger(__name__)
+
+_TOKENIZER_FOR_DOC = "XLMRobertaTokenizer"
+_CHECKPOINT_FOR_DOC = "BAAI/AltCLIP"
+_CONFIG_FOR_DOC = "AltCLIPConfig"
+
+ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "BAAI/AltCLIP",
+ # See all AltCLIP models at https://huggingface.co/models?filter=altclip
+]
+
+
+ALTCLIP_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ALTCLIP_TEXT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`XLMRobertaTokenizerFast`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+ALTCLIP_VISION_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
+ [`CLIPFeatureExtractor`]. See [`CLIPFeatureExtractor.__call__`] for details.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+ALTCLIP_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`XLMRobertaTokenizerFast`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
+ [`CLIPFeatureExtractor`]. See [`CLIPFeatureExtractor.__call__`] for details.
+ return_loss (`bool`, *optional*):
+ Whether or not to return the contrastive loss.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# contrastive loss function, adapted from
+# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
+def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
+
+
+def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
+ caption_loss = contrastive_loss(similarity)
+ image_loss = contrastive_loss(similarity.t())
+ return (caption_loss + image_loss) / 2.0
+
+
+@dataclass
+# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->AltCLIP
+class AltCLIPOutput(ModelOutput):
+ """
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
+ Contrastive loss for image-text similarity.
+ logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
+ similarity scores.
+ logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
+ similarity scores.
+ text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
+ The text embeddings obtained by applying the projection layer to the pooled output of [`AltCLIPTextModel`].
+ image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
+ The image embeddings obtained by applying the projection layer to the pooled output of
+ [`AltCLIPVisionModel`].
+ text_model_output(`BaseModelOutputWithPooling`):
+ The output of the [`AltCLIPTextModel`].
+ vision_model_output(`BaseModelOutputWithPooling`):
+ The output of the [`AltCLIPVisionModel`].
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits_per_image: torch.FloatTensor = None
+ logits_per_text: torch.FloatTensor = None
+ text_embeds: torch.FloatTensor = None
+ image_embeds: torch.FloatTensor = None
+ text_model_output: BaseModelOutputWithPooling = None
+ vision_model_output: BaseModelOutputWithPooling = None
+
+ def to_tuple(self) -> Tuple[Any]:
+ return tuple(
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
+ for k in self.keys()
+ )
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->AltRoberta
+class AltRobertaEmbeddings(nn.Module):
+ """
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
+ """
+
+ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
+ self.register_buffer(
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
+ )
+
+ # End copy
+ self.padding_idx = config.pad_token_id
+ self.position_embeddings = nn.Embedding(
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
+ )
+
+ def forward(
+ self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
+ ):
+ if position_ids is None:
+ if input_ids is not None:
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
+ else:
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
+
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
+ """
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
+
+ Args:
+ inputs_embeds: torch.Tensor
+
+ Returns: torch.Tensor
+ """
+ input_shape = inputs_embeds.size()[:-1]
+ sequence_length = input_shape[1]
+
+ position_ids = torch.arange(
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
+ )
+ return position_ids.unsqueeze(0).expand(input_shape)
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->AltRoberta
+class AltRobertaSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ use_cache = past_key_value is not None
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
+ if use_cache:
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
+ -1, 1
+ )
+ else:
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in AltRobertaModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput
+class AltRobertaSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaAttention with Roberta->AltRoberta
+class AltRobertaAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = AltRobertaSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = AltRobertaSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate with Roberta->AltRoberta
+class AltRobertaIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaOutput
+class AltRobertaOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaLayer with Roberta->AltRoberta
+class AltRobertaLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = AltRobertaAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = AltRobertaAttention(config, position_embedding_type="absolute")
+ self.intermediate = AltRobertaIntermediate(config)
+ self.output = AltRobertaOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->AltRoberta
+class AltRobertaEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([AltRobertaLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+
+ if use_cache:
+ logger.warning(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs, past_key_value, output_attentions)
+
+ return custom_forward
+
+ layer_outputs = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(layer_module),
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaPooler
+class AltRobertaPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->AltCLIP
+class AltCLIPAttention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.embed_dim = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.head_dim = self.embed_dim // self.num_heads
+ if self.head_dim * self.num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
+ f" {self.num_heads})."
+ )
+ self.scale = self.head_dim**-0.5
+ self.dropout = config.attention_dropout
+
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ causal_attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ bsz, tgt_len, embed_dim = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scale
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.view(*proj_shape)
+ value_states = value_states.view(*proj_shape)
+
+ src_len = key_states.size(1)
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ # apply the causal_attention_mask first
+ if causal_attention_mask is not None:
+ if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
+ f" {causal_attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if output_attentions:
+ # this operation is a bit akward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped
+
+
+# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->AltCLIP
+class AltCLIPMLP(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.activation_fn = ACT2FN[config.hidden_act]
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.fc1(hidden_states)
+ hidden_states = self.activation_fn(hidden_states)
+ hidden_states = self.fc2(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->AltCLIP
+class AltCLIPEncoderLayer(nn.Module):
+ def __init__(self, config: AltCLIPConfig):
+ super().__init__()
+ self.embed_dim = config.hidden_size
+ self.self_attn = AltCLIPAttention(config)
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim)
+ self.mlp = AltCLIPMLP(config)
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: torch.Tensor,
+ causal_attention_mask: torch.Tensor,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ `(config.encoder_attention_heads,)`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+
+ hidden_states = self.layer_norm1(hidden_states)
+ hidden_states, attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ causal_attention_mask=causal_attention_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.layer_norm2(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->AltCLIP
+class AltCLIPEncoder(nn.Module):
+ """
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
+ [`AltCLIPEncoderLayer`].
+
+ Args:
+ config: AltCLIPConfig
+ """
+
+ def __init__(self, config: AltCLIPConfig):
+ super().__init__()
+ self.config = config
+ self.layers = nn.ModuleList([AltCLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ inputs_embeds,
+ attention_mask: Optional[torch.Tensor] = None,
+ causal_attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ r"""
+ Args:
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Causal mask for the text model. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ hidden_states = inputs_embeds
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ if self.gradient_checkpointing and self.training:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs, output_attentions)
+
+ return custom_forward
+
+ layer_outputs = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(encoder_layer),
+ hidden_states,
+ attention_mask,
+ causal_attention_mask,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ causal_attention_mask,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->AltCLIP
+class AltCLIPVisionEmbeddings(nn.Module):
+ def __init__(self, config: AltCLIPVisionConfig):
+ super().__init__()
+ self.config = config
+ self.embed_dim = config.hidden_size
+ self.image_size = config.image_size
+ self.patch_size = config.patch_size
+
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
+
+ self.patch_embedding = nn.Conv2d(
+ in_channels=config.num_channels,
+ out_channels=self.embed_dim,
+ kernel_size=self.patch_size,
+ stride=self.patch_size,
+ bias=False,
+ )
+
+ self.num_patches = (self.image_size // self.patch_size) ** 2
+ self.num_positions = self.num_patches + 1
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
+
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
+ batch_size = pixel_values.shape[0]
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
+
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
+ embeddings = embeddings + self.position_embedding(self.position_ids)
+ return embeddings
+
+
+class AltCLIPPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = AltCLIPConfig
+ base_model_prefix = "altclip"
+ supports_gradient_checkpointing = True
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ factor = self.config.initializer_factor
+ if isinstance(module, AltCLIPVisionEmbeddings):
+ factor = self.config.initializer_factor
+ nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
+ nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
+ nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
+ elif isinstance(module, AltCLIPAttention):
+ factor = self.config.initializer_factor
+ in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
+ out_proj_std = (module.embed_dim**-0.5) * factor
+ nn.init.normal_(module.q_proj.weight, std=in_proj_std)
+ nn.init.normal_(module.k_proj.weight, std=in_proj_std)
+ nn.init.normal_(module.v_proj.weight, std=in_proj_std)
+ nn.init.normal_(module.out_proj.weight, std=out_proj_std)
+ elif isinstance(module, AltCLIPMLP):
+ factor = self.config.initializer_factor
+ in_proj_std = (
+ (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
+ )
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
+ nn.init.normal_(module.fc1.weight, std=fc_std)
+ nn.init.normal_(module.fc2.weight, std=in_proj_std)
+ elif isinstance(module, AltCLIPModel):
+ nn.init.normal_(
+ module.text_projection.weight,
+ std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
+ )
+ nn.init.normal_(
+ module.visual_projection.weight,
+ std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
+ )
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+ def _set_gradient_checkpointing(self, module, value=False):
+ if isinstance(module, AltCLIPEncoder):
+ module.gradient_checkpointing = value
+ if isinstance(module, AltRobertaEncoder):
+ module.gradient_checkpointing = value
+
+
+# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer with CLIPVisionTransformer->AltCLIPVisionTransformer,CLIPVisionConfig->AltCLIPVisionConfig,CLIPVisionEmbeddings->AltCLIPVisionEmbeddings,CLIPEncoder->AltCLIPEncoder,CLIP_VISION_INPUTS_DOCSTRING->ALTCLIP_VISION_INPUTS_DOCSTRING
+class AltCLIPVisionTransformer(nn.Module):
+ def __init__(self, config: AltCLIPVisionConfig):
+ super().__init__()
+ self.config = config
+ embed_dim = config.hidden_size
+
+ self.embeddings = AltCLIPVisionEmbeddings(config)
+ self.pre_layrnorm = nn.LayerNorm(embed_dim)
+ self.encoder = AltCLIPEncoder(config)
+ self.post_layernorm = nn.LayerNorm(embed_dim)
+
+ @add_start_docstrings_to_model_forward(ALTCLIP_VISION_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=AltCLIPVisionConfig)
+ def forward(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ Returns:
+
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ hidden_states = self.embeddings(pixel_values)
+ hidden_states = self.pre_layrnorm(hidden_states)
+
+ encoder_outputs = self.encoder(
+ inputs_embeds=hidden_states,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_state = encoder_outputs[0]
+ pooled_output = last_hidden_state[:, 0, :]
+ pooled_output = self.post_layernorm(pooled_output)
+
+ if not return_dict:
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=last_hidden_state,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+class AltCLIPVisionModel(AltCLIPPreTrainedModel):
+ config_class = AltCLIPVisionConfig
+ main_input_name = "pixel_values"
+
+ def __init__(self, config: AltCLIPVisionConfig):
+ super().__init__(config)
+ self.vision_model = AltCLIPVisionTransformer(config)
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self) -> nn.Module:
+ return self.vision_model.embeddings.patch_embedding
+
+ @add_start_docstrings_to_model_forward(ALTCLIP_VISION_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=AltCLIPVisionConfig)
+ def forward(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AltCLIPProcessor, AltCLIPVisionModel
+
+ >>> model = AltCLIPVisionModel.from_pretrained("BAAI/AltCLIP")
+ >>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(images=image, return_tensors="pt")
+
+ >>> outputs = model(**inputs)
+ >>> last_hidden_state = outputs.last_hidden_state
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ return self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+class AltRobertaModel(AltCLIPPreTrainedModel):
+ """
+
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
+ cross-attention is added between the self-attention layers, following the architecture described in *Attention is
+ all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
+ Kaiser and Illia Polosukhin.
+
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
+
+ .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
+
+ """
+
+ config_class = AltCLIPTextConfig
+
+ # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->AltRoberta
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = AltRobertaEmbeddings(config)
+ self.encoder = AltRobertaEncoder(config)
+
+ self.pooler = AltRobertaPooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ # Copied from transformers.models.bert.modeling_bert.BertModel.forward
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+class AltCLIPTextModel(AltCLIPPreTrainedModel):
+ config_class = AltCLIPTextConfig
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.roberta = AltRobertaModel(config, add_pooling_layer=False)
+ self.transformation = nn.Linear(config.hidden_size, config.project_dim)
+ self.transformation_pre = nn.Linear(config.hidden_size, config.project_dim)
+ self.pre_LN = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.post_init()
+
+ def get_input_embeddings(self) -> nn.Module:
+ return self.roberta.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value: nn.Embedding) -> None:
+ self.roberta.embeddings.word_embeddings = value
+
+ def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
+ return super().resize_token_embeddings(new_num_tokens)
+
+ @add_start_docstrings_to_model_forward(ALTCLIP_TEXT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndProjection, config_class=AltCLIPTextConfig)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ ):
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AltCLIPProcessor, AltCLIPTextModel
+
+ >>> model = AltCLIPTextModel.from_pretrained("BAAI/AltCLIP")
+ >>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
+
+ >>> texts = ["it's a cat", "it's a dog"]
+
+ >>> inputs = processor(text=texts, padding=True, return_tensors="pt")
+
+ >>> outputs = model(**inputs)
+ >>> last_hidden_state = outputs.last_hidden_state
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
+ ```"""
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roberta(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=True,
+ return_dict=return_dict,
+ )
+
+ # last module outputs
+ sequence_output = outputs[0]
+
+ # project the last outputs
+ sequence_output = self.pre_LN(sequence_output)
+
+ # pooler
+ projection_state = self.transformation(sequence_output)
+ pooler_output = projection_state[:, 0]
+
+ sequence_output2 = outputs[1][-2]
+
+ # project every module
+ sequence_output2 = self.pre_LN(sequence_output2)
+
+ # pooler
+ projection_state2 = self.transformation_pre(sequence_output2)
+ pooler_output2 = projection_state2[:, 0]
+ if not return_dict:
+ return (projection_state, pooler_output) + outputs[2:4]
+
+ return BaseModelOutputWithPoolingAndProjection(
+ last_hidden_state=projection_state,
+ penultimate_hidden_state=projection_state2,
+ pooler_output=pooler_output,
+ pooler_output2 = pooler_output2,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class AltCLIPModel(AltCLIPPreTrainedModel):
+ config_class = AltCLIPConfig
+
+ def __init__(self, config: AltCLIPConfig):
+ super().__init__(config)
+
+ if not isinstance(config.vision_config, AltCLIPVisionConfig):
+ raise ValueError(
+ "config.vision_config is expected to be of type AltCLIPVisionConfig but is of type"
+ f" {type(config.vision_config)}."
+ )
+ if not isinstance(config.text_config, AltCLIPTextConfig):
+ raise ValueError(
+ "config.text_config is expected to be of type AltCLIPTextConfig but is of type"
+ f" {type(config.text_config)}."
+ )
+
+ text_config = config.text_config
+ vision_config = config.vision_config
+
+ self.projection_dim = config.projection_dim
+ self.text_embed_dim = text_config.project_dim
+ self.vision_embed_dim = vision_config.hidden_size
+
+ self.text_model = AltCLIPTextModel(text_config)
+ self.vision_model = AltCLIPVisionTransformer(vision_config)
+
+ self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
+ self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
+ self.logit_scale = nn.Parameter(torch.ones([]) * self.config.logit_scale_init_value)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ALTCLIP_TEXT_INPUTS_DOCSTRING)
+ def get_text_features(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ token_type_ids=None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> torch.FloatTensor:
+ r"""
+ Returns:
+ text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
+ applying the projection layer to the pooled output of [`AltCLIPTextModel`].
+
+ Examples:
+
+ ```python
+ >>> from transformers import AltCLIPProcessor, AltCLIPModel
+
+ >>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
+ >>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
+ >>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
+ >>> text_features = model.get_text_features(**inputs)
+ ```"""
+ # Use AltCLIP model's config for some fields (if specified) instead of those of vision & text components.
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ text_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = text_outputs[1]
+ text_features = self.text_projection(pooled_output)
+
+ return text_features
+
+ @add_start_docstrings_to_model_forward(ALTCLIP_VISION_INPUTS_DOCSTRING)
+ def get_image_features(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> torch.FloatTensor:
+ r"""
+ Returns:
+ image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
+ applying the projection layer to the pooled output of [`AltCLIPVisionModel`].
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AltCLIPProcessor, AltCLIPModel
+
+ >>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
+ >>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+ >>> inputs = processor(images=image, return_tensors="pt")
+ >>> image_features = model.get_image_features(**inputs)
+ ```"""
+ # Use AltCLIP model's config for some fields (if specified) instead of those of vision & text components.
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = vision_outputs[1] # pooled_output
+ image_features = self.visual_projection(pooled_output)
+
+ return image_features
+
+ @add_start_docstrings_to_model_forward(ALTCLIP_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=AltCLIPOutput, config_class=AltCLIPConfig)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ token_type_ids=None,
+ return_loss: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, AltCLIPOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AltCLIPProcessor, AltCLIPModel
+
+ >>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
+ >>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+ >>> inputs = processor(
+ ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
+ ... )
+ >>> outputs = model(**inputs)
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
+ >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
+ ```"""
+ # Use AltCLIP model's config for some fields (if specified) instead of those of vision & text components.
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ text_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ image_embeds = vision_outputs[1]
+ image_embeds = self.visual_projection(image_embeds)
+
+ text_embeds = text_outputs[1]
+ text_embeds = self.text_projection(text_embeds)
+
+ # normalized features
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
+
+ # cosine similarity as logits
+ logit_scale = self.logit_scale.exp()
+ logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
+ logits_per_image = logits_per_text.T
+
+ loss = None
+ if return_loss:
+ loss = clip_loss(logits_per_text)
+
+ if not return_dict:
+ output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
+ return ((loss,) + output) if loss is not None else output
+
+ return AltCLIPOutput(
+ loss=loss,
+ logits_per_image=logits_per_image,
+ logits_per_text=logits_per_text,
+ text_embeds=text_embeds,
+ image_embeds=image_embeds,
+ text_model_output=text_outputs,
+ vision_model_output=vision_outputs,
+ )
+
+
+# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
+def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
+ are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ x: torch.Tensor x:
+
+ Returns: torch.Tensor
+ """
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
+ mask = input_ids.ne(padding_idx).int()
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
+ return incremental_indices.long() + padding_idx