forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
memonger_test.py
842 lines (736 loc) · 36 KB
/
memonger_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
import numpy as np
from caffe2.python import workspace, memonger, core, model_helper, brew
from caffe2.proto import caffe2_pb2
import caffe2.python.hypothesis_test_util as hu
from future.utils import viewvalues
import hypothesis.strategies as st
from hypothesis import given, settings
import unittest
def has_blob(proto, needle):
for op in proto.op:
for inp in op.input:
if inp == needle:
return True
for outp in op.output:
if outp == needle:
return True
return False
def count_blobs(proto):
blobs = set()
for op in proto.op:
blobs = blobs.union(set(op.input)).union(set(op.output))
return len(blobs)
class MemongerTest(hu.HypothesisTestCase):
@given(input_dim=st.integers(min_value=1, max_value=10),
output_dim=st.integers(min_value=1, max_value=10),
batch_size=st.integers(min_value=1, max_value=10),
do=st.sampled_from(hu.device_options),
algo=st.sampled_from(memonger.AssignmentAlgorithm))
@settings(max_examples=5, deadline=None)
def test_simple_memonger(self, input_dim, output_dim, batch_size, do, algo):
m = model_helper.ModelHelper()
fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim)
fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim)
fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim)
fc3.Relu([], fc3)\
.Softmax([], "pred") \
.LabelCrossEntropy(["label"], ["xent"]) \
.AveragedLoss([], "loss")
input_to_grad = m.AddGradientOperators(["loss"])
m.net.Proto().device_option.CopyFrom(do)
m.param_init_net.Proto().device_option.CopyFrom(do)
static_blobs = \
[o for op in m.param_init_net.Proto().op for o in op.output] + \
["data", "label", "loss", input_to_grad["fc1_w"]]
optimization = memonger.optimize_interference(
m.Proto(), static_blobs, algo=algo)
data = np.random.randn(batch_size, input_dim).astype(np.float32)
label = np.random.randint(
low=0, high=output_dim, size=(batch_size,)).astype(np.int32)
workspace.RunNetOnce(m.param_init_net)
workspace.FeedBlob("data", data, device_option=do)
workspace.FeedBlob("label", label, device_option=do)
workspace.RunNetOnce(m.net)
loss = workspace.FetchBlob("loss")
grad = workspace.FetchBlob(str(input_to_grad["fc1_w"]))
workspace.RunNetOnce(optimization.net)
optimized_loss = workspace.FetchBlob("loss")
optimized_grad = workspace.FetchBlob(str(input_to_grad["fc1_w"]))
np.testing.assert_almost_equal(loss, optimized_loss)
np.testing.assert_almost_equal(grad, optimized_grad)
stats = memonger.compute_statistics(optimization.assignments)
self.assertLess(stats.optimized_nbytes, stats.baseline_nbytes)
# run with blob sizes
blob_sizes = memonger.collect_blob_sizes(m.Proto())
optimization1 = memonger.optimize_interference(
m.Proto(), static_blobs, blob_sizes=blob_sizes, algo=algo)
workspace.RunNetOnce(optimization1.net)
optimized_loss = workspace.FetchBlob("loss")
optimized_grad = workspace.FetchBlob(str(input_to_grad["fc1_w"]))
np.testing.assert_almost_equal(loss, optimized_loss)
np.testing.assert_almost_equal(grad, optimized_grad)
stats = memonger.compute_statistics(optimization1.assignments)
self.assertLessEqual(stats.optimized_nbytes, stats.baseline_nbytes)
@given(input_dim=st.integers(min_value=1, max_value=10),
output_dim=st.integers(min_value=1, max_value=10),
batch_size=st.integers(min_value=1, max_value=10),
do=st.sampled_from(hu.device_options))
@settings(max_examples=5, deadline=None)
def test_fast_memonger(self, input_dim, output_dim, batch_size, do):
m = model_helper.ModelHelper()
fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim)
fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim)
fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim)
fc3.Relu([], fc3)\
.Softmax([], "pred") \
.LabelCrossEntropy(["label"], ["xent"]) \
.AveragedLoss([], "loss")
input_to_grad = m.AddGradientOperators(["loss"])
m.net.Proto().device_option.CopyFrom(do)
m.param_init_net.Proto().device_option.CopyFrom(do)
static_blobs = \
[o for op in m.param_init_net.Proto().op for o in op.output] + \
["data", "label", "loss", input_to_grad["fc1_w"]]
optimized_net = memonger.optimize_inference_fast(
m.Proto(), static_blobs)
data = np.random.randn(batch_size, input_dim).astype(np.float32)
label = np.random.randint(
low=0, high=output_dim, size=(batch_size,)).astype(np.int32)
workspace.RunNetOnce(m.param_init_net)
workspace.FeedBlob("data", data, device_option=do)
workspace.FeedBlob("label", label, device_option=do)
workspace.RunNetOnce(m.net)
loss = workspace.FetchBlob("loss")
grad = workspace.FetchBlob(str(input_to_grad["fc1_w"]))
workspace.RunNetOnce(optimized_net)
optimized_loss = workspace.FetchBlob("loss")
optimized_grad = workspace.FetchBlob(str(input_to_grad["fc1_w"]))
np.testing.assert_almost_equal(loss, optimized_loss)
np.testing.assert_almost_equal(grad, optimized_grad)
self.assertLess(count_blobs(optimized_net), count_blobs(m.Proto()))
def test_fast_memonger_unique_outputs(self):
m = model_helper.ModelHelper()
fc = []
for i in range(2):
z = brew.fc(
m, "data{}".format(i), "fc".format(i), dim_in=2, dim_out=2)
fc.append(z)
r = []
# Trick is here to have same input appear twice in a same Sum
for x in fc:
for y in fc:
r.append(brew.sum(m, [x, y], 1))
concated = brew.concat(m, r, "concated")
brew.relu(m, concated, "merged")
static_blobs = \
[o for op in m.param_init_net.Proto().op for o in op.output] + \
["merged"] + ["data{}".format(i) for i in range(len(fc))]
optimized_net = memonger.optimize_inference_fast(
m.Proto(), static_blobs)
for op in optimized_net.op:
self.assertEqual(len(op.output), len(set(op.output)), str(op))
@given(input_dim=st.integers(min_value=1, max_value=4),
output_dim=st.integers(min_value=1, max_value=4),
batch_size=st.integers(min_value=1, max_value=4))
def test_gradient_optim(self, input_dim, output_dim, batch_size):
m = model_helper.ModelHelper()
with core.NameScope("name_x"):
fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim)
fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim)
fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim)
fc4 = brew.fc(m, fc3, "fc4", dim_in=output_dim, dim_out=output_dim)
fc5 = brew.fc(m, fc4, "fc5", dim_in=output_dim, dim_out=output_dim)
fc5.Relu([], fc5)\
.Softmax([], "pred") \
.LabelCrossEntropy(["label"], ["xent"]) \
.AveragedLoss([], "loss")
input_to_grad = m.AddGradientOperators(["name_x/loss"])
blobs_before = count_blobs(m.net.Proto())
optim_proto = memonger.share_grad_blobs(
m.net,
["name_x/loss"],
set(viewvalues(m.param_to_grad)),
"name_x/",
share_activations=False,
)
blobs_after = count_blobs(optim_proto)
self.assertLess(blobs_after, blobs_before)
optim_proto_wacts = memonger.share_grad_blobs(
m.net,
["name_x/loss"],
set(viewvalues(m.param_to_grad)),
"name_x/",
share_activations=True,
dont_share_blobs=set([str(input_to_grad["name_x/fc1_w"])]),
)
blobs_wact_optim = count_blobs(optim_proto_wacts)
self.assertLessEqual(blobs_wact_optim, blobs_after)
# Check that the last activations are not shared
self.assertTrue(has_blob(optim_proto, "name_x/fc5"))
self.assertTrue(
has_blob(optim_proto_wacts, "name_x/fc5"),
"Dont remap final activation",
)
# Test networks produce exactly same gradients
data = np.random.randn(batch_size, input_dim).astype(np.float32)
label = np.random.randint(
low=0, high=output_dim, size=(batch_size,)).astype(np.int32)
workspace.RunNetOnce(m.param_init_net)
workspace.FeedBlob("name_x/data", data)
workspace.FeedBlob("name_x/label", label)
workspace.RunNetOnce(m.net)
loss = workspace.FetchBlob("name_x/loss")
grad = workspace.FetchBlob(str(input_to_grad["name_x/fc1_w"]))
workspace.RunNetOnce(optim_proto)
optimized_loss = workspace.FetchBlob("name_x/loss")
optimized_grad = workspace.FetchBlob(str(input_to_grad["name_x/fc1_w"]))
np.testing.assert_almost_equal(loss, optimized_loss)
np.testing.assert_almost_equal(grad, optimized_grad)
workspace.FeedBlob(str(input_to_grad["name_x/fc1_w"]), np.array([0.0]))
# Run with the forward optimization
workspace.RunNetOnce(optim_proto_wacts)
optimized_loss = workspace.FetchBlob("name_x/loss")
optimized_grad = workspace.FetchBlob(str(input_to_grad["name_x/fc1_w"]))
np.testing.assert_almost_equal(loss, optimized_loss)
np.testing.assert_almost_equal(grad, optimized_grad)
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
def test_memonger_mix_cpu_gpu(self):
'''
Check that memonger does not make blobs cross CPU/GPU boundary
'''
m = model_helper.ModelHelper()
with core.DeviceScope(core.DeviceOption(workspace.GpuDeviceType, 0)):
fc1 = brew.fc(m, "data", "fc1", dim_in=2, dim_out=2)
fc2 = brew.fc(m, fc1, "fc2", dim_in=2, dim_out=2)
fc3 = brew.fc(m, fc2, "fc3", dim_in=2, dim_out=2)
fc4 = brew.fc(m, fc3, "fc4", dim_in=2, dim_out=2)
fc4_cpu = m.net.CopyGPUToCPU(fc4, "fc4_cpu")
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)):
fc5_cpu = brew.fc(m, fc4_cpu, "fc5_cpu", dim_in=2, dim_out=2)
fc6_cpu = brew.fc(m, fc5_cpu, "fc6_cpu", dim_in=2, dim_out=2)
fc7_cpu = brew.fc(m, fc6_cpu, "fc7_cpu", dim_in=2, dim_out=2)
fc7_cpu.Relu([], fc7_cpu) \
.Softmax([], "pred") \
.LabelCrossEntropy(["label"], ["xent"]) \
.AveragedLoss([], "loss")
m.AddGradientOperators(["loss"])
blobs_before = count_blobs(m.net.Proto())
optim_proto = memonger.share_grad_blobs(
m.net,
["loss"],
set(viewvalues(m.param_to_grad)),
"",
share_activations=True,
dont_share_blobs=set(),
)
blobs_after = count_blobs(optim_proto)
self.assertLess(blobs_after, blobs_before)
# Create set of blobs on CPU side and GPU side and check they don't
# overlap
device_blobs = {caffe2_pb2.CPU: set(), workspace.GpuDeviceType: set()}
for op in optim_proto.op:
if op.type not in ['CopyCPUToGPU', "CopyGPUToCPU"]:
dev = op.device_option.device_type
for b in list(op.input) + list(op.output):
device_blobs[dev].add(b)
device_crossers = device_blobs[caffe2_pb2.CPU].intersection(
device_blobs[workspace.GpuDeviceType]
)
self.assertEquals(device_crossers, set())
@given(input_dim=st.integers(min_value=4, max_value=4),
output_dim=st.integers(min_value=4, max_value=4),
batch_size=st.integers(min_value=4, max_value=4))
@settings(deadline=1000)
def test_gradient_optim_tree(self, input_dim, output_dim, batch_size):
m = model_helper.ModelHelper()
with core.NameScope("name_x"):
fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim)
fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim)
fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim)
fc4 = brew.fc(m, fc3, "fc4", dim_in=output_dim, dim_out=output_dim)
fc5 = brew.fc(m, fc4, "fc5", dim_in=output_dim, dim_out=output_dim)
fc5.Relu([], fc5) \
.Softmax([], "pred1") \
.LabelCrossEntropy(["label"], ["xent1"]) \
.AveragedLoss([], "loss1")
fc6 = brew.fc(m, fc5, "fc6", dim_in=output_dim, dim_out=output_dim)
fc6.Relu([], fc6) \
.Softmax([], "pred2") \
.LabelCrossEntropy(["label"], ["xent2"]) \
.AveragedLoss([], "loss2")
input_to_grad = m.AddGradientOperators(["name_x/loss1", "name_x/loss2"])
blobs_before = count_blobs(m.net.Proto())
optim_proto = memonger.share_grad_blobs(
m.net,
["name_x/loss1", "name_x/loss2"],
set(viewvalues(m.param_to_grad)),
"name_x", # "name_x//shared_gradinp_0_shared" if using "name_x/"
share_activations=True,
dont_share_blobs=set(['name_x/fc6', 'name_x/fc5',
str(input_to_grad["name_x/fc1_w"])]),
)
blobs_after = count_blobs(optim_proto)
self.assertLess(blobs_after, blobs_before)
self.assertTrue(has_blob(optim_proto, "name_x/fc6"))
# Test networks produce exactly same gradients
data = np.random.randn(batch_size, input_dim).astype(np.float32)
label = np.random.randint(
low=0, high=output_dim, size=(batch_size,)).astype(np.int32)
workspace.RunNetOnce(m.param_init_net)
workspace.FeedBlob("name_x/data", data)
workspace.FeedBlob("name_x/label", label)
workspace.RunNetOnce(m.net)
loss1 = workspace.FetchBlob("name_x/loss1")
loss2 = workspace.FetchBlob("name_x/loss2")
grad = workspace.FetchBlob(str(input_to_grad["name_x/fc1_w"]))
workspace.FeedBlob(str(input_to_grad["name_x/fc1_w"]), np.array([0.0]))
workspace.RunNetOnce(optim_proto)
optimized_loss1 = workspace.FetchBlob("name_x/loss1")
optimized_loss2 = workspace.FetchBlob("name_x/loss2")
optimized_grad = workspace.FetchBlob(str(input_to_grad["name_x/fc1_w"]))
np.testing.assert_almost_equal(loss1, optimized_loss1)
np.testing.assert_almost_equal(loss2, optimized_loss2)
np.testing.assert_almost_equal(grad, optimized_grad)
@given(input_dim=st.integers(min_value=4, max_value=4),
output_dim=st.integers(min_value=4, max_value=4),
batch_size=st.integers(min_value=4, max_value=4))
@settings(deadline=1000)
def test_forward_optim_tree_daggy(self, input_dim, output_dim, batch_size):
m = model_helper.ModelHelper()
m.Proto().type = "dag"
m.Proto().num_workers = 4
with core.NameScope("name_x"):
fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim)
fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim)
fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim)
fc4 = brew.fc(m, fc3, "fc4", dim_in=output_dim, dim_out=output_dim)
fc5 = brew.fc(m, fc4, "fc5", dim_in=output_dim, dim_out=output_dim)
# Branch
fc3b = brew.fc(m, fc2, "fc3b", dim_in=output_dim, dim_out=output_dim)
fc4b = brew.fc(m, fc3b, "fc4b", dim_in=output_dim, dim_out=output_dim)
fc5b = brew.fc(m, fc4b, "fc5b", dim_in=output_dim, dim_out=output_dim)
fc5sum = brew.sum(m, [fc5, fc5b], "fc5sum")
fc5.Relu([], fc5sum) \
.Softmax([], "pred1") \
.LabelCrossEntropy(["label"], ["xent1"]) \
.AveragedLoss([], "loss1")
fc6 = brew.fc(m, fc5, "fc6", dim_in=output_dim, dim_out=output_dim)
fc6.Relu([], fc6) \
.Softmax([], "pred2") \
.LabelCrossEntropy(["label"], ["xent2"]) \
.AveragedLoss([], "loss2")
blobs_before = count_blobs(m.net.Proto())
optim_proto = memonger.optimize_inference_for_dag(
m.net, ["name_x/data"], "name_x"
)
blobs_after = count_blobs(optim_proto)
self.assertLess(blobs_after, blobs_before)
# Test networks produce exactly same results
data = np.random.randn(batch_size, input_dim).astype(np.float32)
label = np.random.randint(
low=0, high=output_dim, size=(batch_size,)).astype(np.int32)
workspace.RunNetOnce(m.param_init_net)
workspace.FeedBlob("name_x/data", data)
workspace.FeedBlob("name_x/label", label)
workspace.RunNetOnce(m.net)
loss1 = workspace.FetchBlob("name_x/loss1")
loss2 = workspace.FetchBlob("name_x/loss2")
workspace.RunNetOnce(optim_proto)
optimized_loss1 = workspace.FetchBlob("name_x/loss1")
optimized_loss2 = workspace.FetchBlob("name_x/loss2")
np.testing.assert_almost_equal(loss1, optimized_loss1)
np.testing.assert_almost_equal(loss2, optimized_loss2)
@given(input_dim=st.integers(min_value=4, max_value=4),
output_dim=st.integers(min_value=4, max_value=4),
batch_size=st.integers(min_value=4, max_value=4))
@settings(deadline=10000)
def test_forward_optim_tree_harder(self, input_dim, output_dim, batch_size):
m = model_helper.ModelHelper()
m.net.Proto().type = "dag"
m.net.Proto().num_workers = 4
m.net.AddExternalInput("label")
m.net.AddExternalInput("data")
with core.NameScope("name_x"):
fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim)
fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim)
fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim)
fc4 = brew.fc(m, fc3, "fc4", dim_in=output_dim, dim_out=output_dim)
fc5 = brew.fc(m, fc4, "fc5", dim_in=output_dim, dim_out=output_dim)
# Branch
fc3b = brew.fc(m, fc2, "fc3b", dim_in=output_dim, dim_out=output_dim)
fc4b = brew.fc(m, fc3b, "fc4b", dim_in=output_dim, dim_out=output_dim)
fc5b = brew.fc(m, fc4b, "fc5b", dim_in=output_dim, dim_out=output_dim)
fc5sum = brew.sum(m, [fc5, fc5b], "fc5sum")
fc5sum.Relu([], "relu1") \
.Softmax([], "pred1") \
.LabelCrossEntropy(["label"], ["xent1"]) \
.AveragedLoss([], "loss1")
fc6 = brew.fc(m, fc5, "fc6", dim_in=output_dim, dim_out=output_dim)
fc6.Relu([], fc6) \
.Softmax([], "pred2") \
.LabelCrossEntropy(["label"], ["xent2"]) \
.AveragedLoss([], "loss2")
blobs_before = count_blobs(m.net.Proto())
optim_proto = memonger.optimize_inference_for_dag(
m.net, ["name_x/data"], "name_x/"
)
blobs_after = count_blobs(optim_proto)
# Extra test with when one of the parameters is also an input.
# This caused a bug before.
optim_proto_extra_input = memonger.optimize_inference_for_dag(
m.net, ["name_x/data", "name_x/fc1_w"], "name_x/"
)
blobs_after_extra_input = count_blobs(optim_proto_extra_input)
self.assertEqual(blobs_after, blobs_after_extra_input)
###
print(str(optim_proto))
self.assertLess(blobs_after, blobs_before)
# Test networks produce exactly same results
data = np.random.randn(batch_size, input_dim).astype(np.float32)
label = np.random.randint(
low=0, high=output_dim, size=(batch_size,)).astype(np.int32)
workspace.RunNetOnce(m.param_init_net)
workspace.FeedBlob("name_x/data", data)
workspace.FeedBlob("name_x/label", label)
workspace.RunNetOnce(m.net)
loss1 = workspace.FetchBlob("name_x/loss1")
loss2 = workspace.FetchBlob("name_x/loss2")
workspace.RunNetOnce(optim_proto)
optimized_loss1 = workspace.FetchBlob("name_x/loss1")
optimized_loss2 = workspace.FetchBlob("name_x/loss2")
np.testing.assert_almost_equal(loss1, optimized_loss1)
np.testing.assert_almost_equal(loss2, optimized_loss2)
# This test reproduces scenario where dag traversal for finding
# shared blobs was not always starting from ops with in degree of 0
@settings(deadline=10000)
def test_forward_optim_tree_dag_traversal(self):
input_dim = 4
output_dim = 4
batch_size = 4
m = model_helper.ModelHelper()
m.Proto().type = "dag"
m.Proto().num_workers = 4
with core.NameScope("name_x"):
fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim)
fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim)
fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim)
fc4 = brew.fc(m, fc3, "fc4", dim_in=output_dim, dim_out=output_dim)
fc5 = brew.fc(m, fc4, "fc5", dim_in=output_dim, dim_out=output_dim)
# Branch
fc3b = brew.fc(m, fc2, "fc3b", dim_in=output_dim, dim_out=output_dim)
fc4b = brew.fc(m, fc3b, "fc4b", dim_in=output_dim, dim_out=output_dim)
fc5b = brew.fc(m, fc4b, "fc5b", dim_in=output_dim, dim_out=output_dim)
fc5sum = brew.sum(m, [fc5, fc5b], "fc5sum")
fc5.Relu([], fc5sum) \
.Softmax([], "pred1") \
.LabelCrossEntropy(["label"], ["xent1"]) \
.AveragedLoss([], "loss1")
fc6 = brew.fc(m, fc5, "fc6", dim_in=output_dim, dim_out=output_dim)
fc6.Relu([], fc6) \
.Softmax([], "pred2") \
.LabelCrossEntropy(["label"], ["xent2"]) \
.AveragedLoss([], "loss2")
blobs_before = count_blobs(m.net.Proto())
# adding name_x/fc5_w as heads (which belongs to non-root op)
# to make sure that dag traversal always starts from root ops
optim_proto = memonger.optimize_inference_for_dag(
m.net, ["name_x/fc5_w", "name_x/data"], "name_x"
)
blobs_after = count_blobs(optim_proto)
self.assertLess(blobs_after, blobs_before)
# This is specifically to verify the op schema check being done in memonger
def test_forward_optim_tree_enforce_inplace_op_invalid(self):
m = model_helper.ModelHelper()
m.Proto().type = "dag"
m.Proto().num_workers = 4
net = m.net
net.IndexFreeze("A", "B") # enforce inplace op
net.Sum(["B", "B"], "C")
net.Relu("C", "D")
net.Sum(["D", "D"], "E")
with self.assertRaises(RuntimeError):
memonger.optimize_inference_for_dag(net, ["A"], "")
# Here inplace op is specifically a root op to repro the scenario where dag
# memonger could treat all the output blobs as shareable blobs and fails
# assertion of input blob with the same name not allowed to share
def test_forward_optim_tree_enforce_inplace_op_valid_and_as_head(self):
m = model_helper.ModelHelper()
m.Proto().type = "dag"
m.Proto().num_workers = 4
net = m.net
net.IndexFreeze("A", "A") # enforce inplace op
net.Sum(["A", "A"], "B")
net.Relu("B", "C")
net.Relu("C", "D")
net.Sum(["D", "D"], "E")
blobs_before = count_blobs(m.net.Proto())
optim_proto = memonger.optimize_inference_for_dag(
net, ["A"], ""
)
blobs_after = count_blobs(optim_proto)
self.assertLess(blobs_after, blobs_before)
def test_rnn(self):
from caffe2.python import rnn_cell
T = 5
model = model_helper.ModelHelper()
seq_lengths, labels = \
model.net.AddExternalInputs(
'seq_lengths', 'labels',
)
init_blobs = []
for i in range(2):
hidden_init, cell_init = model.net.AddExternalInputs(
"hidden_init_{}".format(i),
"cell_init_{}".format(i)
)
init_blobs.extend([hidden_init, cell_init])
model.param_init_net.ConstantFill([], ["input"], shape=[T, 4, 10])
output, last_hidden, _, last_state = rnn_cell.LSTM(
model=model,
input_blob="input",
seq_lengths=seq_lengths,
initial_states=init_blobs,
dim_in=10,
dim_out=[10, 10],
scope="lstm1",
forward_only=False,
drop_states=True,
return_last_layer_only=True,
)
softmax, loss = model.net.SoftmaxWithLoss(
[model.Flatten(output), "labels"],
['softmax', 'loss'],
)
model.AddGradientOperators([loss])
blobs_before = count_blobs(model.net.Proto())
optim_proto = memonger.share_grad_blobs(
model.net,
["loss"],
set(viewvalues(model.param_to_grad)),
"",
share_activations=True,
dont_share_blobs=set(),
)
blobs_after = count_blobs(optim_proto)
self.assertLess(blobs_after, blobs_before)
# Run once to see all blobs are set up correctly
for init_blob in init_blobs:
workspace.FeedBlob(init_blob, np.zeros(
[1, 4, 10], dtype=np.float32
))
workspace.FeedBlob("seq_lengths", np.array([T] * 4, dtype=np.int32))
workspace.FeedBlob("labels", np.random.rand(T).astype(np.int32))
workspace.RunNetOnce(model.param_init_net)
workspace.RunNetOnce(model.net)
def test_compute_interference_graph_inplace_ops(self):
m = model_helper.ModelHelper()
m.Copy("b1", "b1")
m.Copy("b1", "b1")
m.Copy("b1", "b1")
g = memonger.compute_interference_graph(m.net.Proto().op)
self.assertEqual(list(g.edges()), [(0, 1), (0, 2), (1, 2)])
def test_topological_sort_longest_path(self):
m = model_helper.ModelHelper()
# 0
m.Copy("conv0_w_comp", "conv0_w")
# 1
conv0 = brew.conv(m, "data", "conv0", 32, 32, 4)
# 2
m.Copy("conv2_w", "conv2_w")
# 3
brew.conv(m, conv0, "conv2", 16, 32, 4)
g = memonger.compute_interference_graph(m.net.Proto().op)
orders_org = memonger.topological_sort_traversal(g)
orders_gt_org = [2, 0, 1, 3]
self.assertEqual(orders_gt_org, list(orders_org))
orders = memonger.topological_sort_traversal_longest_path(g)
# longer path is in front of the shorter one
orders_gt = [0, 1, 2, 3]
self.assertEqual(orders_gt, list(orders))
def test_topological_sort_longest_path_multi_target(self):
# two outputs: conv2 and data4
m = model_helper.ModelHelper()
# 0
m.Copy("conv0_w_comp", "conv0_w")
# 1
conv0 = brew.conv(m, "data", "conv0", 32, 32, 4)
# 2
m.Copy("conv2_w", "conv2_w")
# 3
brew.conv(m, conv0, "conv2", 16, 32, 4)
# 4
m.Copy("data1", "data2")
# 5
m.Copy("data2", "data3")
g = memonger.compute_interference_graph(m.net.Proto().op)
orders_org = memonger.topological_sort_traversal(g)
orders_gt_org = [4, 5, 2, 0, 1, 3]
self.assertEqual(orders_gt_org, list(orders_org))
orders = memonger.topological_sort_traversal_longest_path(g)
# longer path is in front of the shorter one
orders_gt = [0, 1, 2, 3, 4, 5]
self.assertEqual(orders_gt, list(orders))
def test_topological_sort_longest_path_single_node(self):
# single node
m = model_helper.ModelHelper()
# 0
m.Copy("conv0_w_comp", "conv0_w")
g = memonger.compute_interference_graph(m.net.Proto().op)
orders_org = memonger.topological_sort_traversal(g)
orders_gt_org = [0]
self.assertEqual(orders_gt_org, list(orders_org))
orders = memonger.topological_sort_traversal_longest_path(g)
# longer path is in front of the shorter one
orders_gt = [0]
self.assertEqual(orders_gt, list(orders))
def test_compute_assignments_greedy(self):
LiveRange = memonger.LiveRange
ranges_sorted = [
('b1', LiveRange(1, 3, 10)),
('b2', LiveRange(3, 4, 1)),
('b3', LiveRange(5, 6, 1)),
('b4', LiveRange(5, 7, 10)),
]
assignment_gt = [
[ranges_sorted[0], ranges_sorted[3]],
[ranges_sorted[1], ranges_sorted[2]],
]
best = memonger.compute_assignments_greedy(ranges_sorted, None)
self.assertEqual(memonger.get_memory_usage(best), 11)
self.assertEqual(best, assignment_gt)
def test_compute_assignments_dp(self):
LiveRange = memonger.LiveRange
ranges_sorted = [
('b1', LiveRange(1, 3, 10)),
('b2', LiveRange(3, 4, 1)),
('b3', LiveRange(5, 6, 1)),
('b4', LiveRange(5, 7, 10)),
]
best = memonger.compute_assignments_dp(ranges_sorted, None)
self.assertEqual(memonger.get_memory_usage(best), 11)
def test_compute_assignments_dp1(self):
LiveRange = memonger.LiveRange
ranges_sorted = [
('b1', LiveRange(1, 2, 10)),
('b2', LiveRange(4, 6, 1)),
('b3', LiveRange(5, 6, 10)),
]
best = memonger.compute_assignments_dp(ranges_sorted, [])
self.assertEqual(memonger.get_memory_usage(best), 11)
@given(input_dim=st.integers(min_value=4, max_value=4),
output_dim=st.integers(min_value=4, max_value=4),
batch_size=st.integers(min_value=4, max_value=4))
def test_verify_graph_equality(self, input_dim, output_dim, batch_size):
m = model_helper.ModelHelper()
m.Proto().type = "dag"
m.Proto().num_workers = 4
with core.NameScope("name_x"):
fc1 = brew.fc(m, "data", "x", dim_in=input_dim, dim_out=output_dim)
fc2 = brew.fc(m, fc1, "y", dim_in=output_dim, dim_out=output_dim)
fc3 = brew.fc(m, fc1, "z", dim_in=output_dim, dim_out=output_dim)
brew.sum(m, [fc2, fc3], "out")
m2 = model_helper.ModelHelper()
m2.Proto().type = "dag"
m2.Proto().num_workers = 4
with core.NameScope("name_x"):
fc1 = brew.fc(m2, "data", "other_x", dim_in=input_dim, dim_out=output_dim)
fc2 = brew.fc(m2, fc1, "other_y", dim_in=output_dim, dim_out=output_dim)
fc3 = brew.fc(m2, fc1, "other_z", dim_in=output_dim, dim_out=output_dim)
brew.sum(m2, [fc2, fc3], "out")
self.assertTrue(memonger.verify_graph_equality(m.net.Proto(), m2.net.Proto()))
@given(input_dim=st.integers(min_value=4, max_value=4),
output_dim=st.integers(min_value=4, max_value=4),
batch_size=st.integers(min_value=4, max_value=4))
def test_verify_graph_equality_harder(self, input_dim, output_dim, batch_size):
m = model_helper.ModelHelper()
m.Proto().type = "dag"
m.Proto().num_workers = 4
with core.NameScope("name_x"):
fc1 = brew.fc(m, "data", "x", dim_in=input_dim, dim_out=output_dim)
fc2a = brew.fc(m, fc1, "y", dim_in=output_dim, dim_out=output_dim)
fc2b = brew.fc(m, fc1, "z", dim_in=output_dim, dim_out=output_dim)
fc3a = brew.fc(m, fc2a, "u", dim_in=output_dim, dim_out=output_dim)
fc3b = brew.fc(m, fc2b, "v", dim_in=output_dim, dim_out=output_dim)
brew.sum(m, [fc3a, fc3b], "out")
m2 = model_helper.ModelHelper()
m2.Proto().type = "dag"
m2.Proto().num_workers = 4
with core.NameScope("name_x"):
fc1 = brew.fc(m2, "data", "x", dim_in=input_dim, dim_out=output_dim)
fc2a = brew.fc(m2, fc1, "y", dim_in=output_dim, dim_out=output_dim)
fc2b = brew.fc(m2, fc1, "z", dim_in=output_dim, dim_out=output_dim)
fc3a = brew.fc(m2, fc2a, "y", dim_in=output_dim, dim_out=output_dim)
fc3b = brew.fc(m2, fc2b, "z", dim_in=output_dim, dim_out=output_dim)
brew.sum(m2, [fc3a, fc3b], "out")
self.assertTrue(memonger.verify_graph_equality(m.net.Proto(), m2.net.Proto()))
@given(input_dim=st.integers(min_value=4, max_value=4),
output_dim=st.integers(min_value=4, max_value=4),
batch_size=st.integers(min_value=4, max_value=4))
def test_verify_graph_inequality(self, input_dim, output_dim, batch_size):
m = model_helper.ModelHelper()
m.Proto().type = "dag"
m.Proto().num_workers = 4
with core.NameScope("name_x"):
fc1 = brew.fc(m, "data", "x", dim_in=input_dim, dim_out=output_dim)
fc2 = brew.fc(m, fc1, "y", dim_in=output_dim, dim_out=output_dim)
fc3 = brew.fc(m, fc1, "z", dim_in=output_dim, dim_out=output_dim)
brew.sum(m, [fc2, fc3], "out")
m2 = model_helper.ModelHelper()
m2.Proto().type = "dag"
m2.Proto().num_workers = 4
with core.NameScope("name_x"):
fc1 = brew.fc(m2, "data", "x", dim_in=input_dim, dim_out=output_dim)
fc2 = brew.fc(m2, fc1, "y", dim_in=output_dim, dim_out=output_dim)
fc3 = brew.fc(m2, fc1, "y", dim_in=output_dim, dim_out=output_dim)
brew.sum(m2, [fc2, fc3], "out")
self.assertFalse(memonger.verify_graph_equality(m.net.Proto(), m2.net.Proto()))
@given(input_dim=st.integers(min_value=4, max_value=4),
output_dim=st.integers(min_value=4, max_value=4),
batch_size=st.integers(min_value=4, max_value=4))
def test_verify_graph_inequality_harder(self, input_dim, output_dim, batch_size):
m = model_helper.ModelHelper()
m.Proto().type = "dag"
m.Proto().num_workers = 4
with core.NameScope("name_x"):
fc1 = brew.fc(m, "data", "x", dim_in=input_dim, dim_out=output_dim)
fc2a = brew.fc(m, fc1, "y", dim_in=output_dim, dim_out=output_dim)
fc2b = brew.fc(m, fc1, "z", dim_in=output_dim, dim_out=output_dim)
fc3a = brew.fc(m, fc2a, "u", dim_in=output_dim, dim_out=output_dim)
fc3b = brew.fc(m, fc2b, "v", dim_in=output_dim, dim_out=output_dim)
brew.sum(m, [fc3a, fc3b], "out")
m2 = model_helper.ModelHelper()
m2.Proto().type = "dag"
m2.Proto().num_workers = 4
with core.NameScope("name_x"):
fc1 = brew.fc(m2, "data", "x", dim_in=input_dim, dim_out=output_dim)
fc2a = brew.fc(m2, fc1, "y", dim_in=output_dim, dim_out=output_dim)
fc2b = brew.fc(m2, fc1, "y", dim_in=output_dim, dim_out=output_dim)
fc3a = brew.fc(m2, fc2a, "u", dim_in=output_dim, dim_out=output_dim)
fc3b = brew.fc(m2, fc2b, "v", dim_in=output_dim, dim_out=output_dim)
brew.sum(m2, [fc3a, fc3b], "out")
self.assertFalse(memonger.verify_graph_equality(m.net.Proto(), m2.net.Proto()))
def test_release_blobs_when_used(self):
m = model_helper.ModelHelper()
fc1 = brew.fc(m, "data", "x", dim_in=2, dim_out=2)
fc2 = brew.fc(m, fc1, "y", dim_in=2, dim_out=2)
fc3 = brew.fc(m, fc1, "z", dim_in=2, dim_out=2)
fc4 = brew.fc(m, fc2, "u", dim_in=2, dim_out=2)
m.net.Alias(["u"], ["u_alias"])
brew.sum(m, [fc3, fc4], "out")
with_frees = memonger.release_blobs_when_used(m.net.Proto(), set("data"))
expect_frees = {"x", "y", "z"} # out is external output
# and u is aliased so cannot be freed
found_frees = set()
for op in with_frees.op:
if op.type == "Free":
self.assertFalse(op.input[0] in found_frees) # no double frees
found_frees.add(op.input[0])
else:
# Check a freed blob is not used anymore
for inp in op.input:
self.assertFalse(inp in found_frees)
for outp in op.output:
self.assertFalse(outp in found_frees)
self.assertEqual(expect_frees, found_frees)
if __name__ == '__main__':
unittest.main()