-
-
Notifications
You must be signed in to change notification settings - Fork 429
/
Copy path3_cli_and_logging.py
260 lines (228 loc) · 8.5 KB
/
3_cli_and_logging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""This is a full example of using Tianshou with MARL to train agents, complete with argument parsing (CLI) and logging.
Author: Will (https://github.com/WillDudley)
Python version used: 3.8.10
Requirements:
pettingzoo == 1.22.0
git+https://github.com/thu-ml/tianshou
"""
import argparse
import os
from copy import deepcopy
from typing import Optional, Tuple
import gym
import numpy as np
import torch
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.env.pettingzoo_env import PettingZooEnv
from tianshou.policy import BasePolicy, DQNPolicy, MultiAgentPolicyManager, RandomPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from torch.utils.tensorboard import SummaryWriter
from pettingzoo.classic import tictactoe_v3
def get_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=1626)
parser.add_argument("--eps-test", type=float, default=0.05)
parser.add_argument("--eps-train", type=float, default=0.1)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument(
"--gamma", type=float, default=0.9, help="a smaller gamma favors earlier win"
)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--epoch", type=int, default=50)
parser.add_argument("--step-per-epoch", type=int, default=1000)
parser.add_argument("--step-per-collect", type=int, default=10)
parser.add_argument("--update-per-step", type=float, default=0.1)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument(
"--hidden-sizes", type=int, nargs="*", default=[128, 128, 128, 128]
)
parser.add_argument("--training-num", type=int, default=10)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.1)
parser.add_argument(
"--win-rate",
type=float,
default=0.6,
help="the expected winning rate: Optimal policy can get 0.7",
)
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="no training, " "watch the play of pre-trained models",
)
parser.add_argument(
"--agent-id",
type=int,
default=2,
help="the learned agent plays as the"
" agent_id-th player. Choices are 1 and 2.",
)
parser.add_argument(
"--resume-path",
type=str,
default="",
help="the path of agent pth file " "for resuming from a pre-trained agent",
)
parser.add_argument(
"--opponent-path",
type=str,
default="",
help="the path of opponent agent pth file "
"for resuming from a pre-trained agent",
)
parser.add_argument(
"--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu"
)
return parser
def get_args() -> argparse.Namespace:
parser = get_parser()
return parser.parse_known_args()[0]
def get_agents(
args: argparse.Namespace = get_args(),
agent_learn: Optional[BasePolicy] = None,
agent_opponent: Optional[BasePolicy] = None,
optim: Optional[torch.optim.Optimizer] = None,
) -> Tuple[BasePolicy, torch.optim.Optimizer, list]:
env = get_env()
observation_space = (
env.observation_space["observation"]
if isinstance(env.observation_space, gym.spaces.Dict)
else env.observation_space
)
args.state_shape = (
observation_space["observation"].shape or observation_space["observation"].n
)
args.action_shape = env.action_space.shape or env.action_space.n
if agent_learn is None:
# model
net = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
).to(args.device)
if optim is None:
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
agent_learn = DQNPolicy(
net,
optim,
args.gamma,
args.n_step,
target_update_freq=args.target_update_freq,
)
if args.resume_path:
agent_learn.load_state_dict(torch.load(args.resume_path))
if agent_opponent is None:
if args.opponent_path:
agent_opponent = deepcopy(agent_learn)
agent_opponent.load_state_dict(torch.load(args.opponent_path))
else:
agent_opponent = RandomPolicy()
if args.agent_id == 1:
agents = [agent_learn, agent_opponent]
else:
agents = [agent_opponent, agent_learn]
policy = MultiAgentPolicyManager(agents, env)
return policy, optim, env.agents
def get_env():
return PettingZooEnv(tictactoe_v3.env())
def train_agent(
args: argparse.Namespace = get_args(),
agent_learn: Optional[BasePolicy] = None,
agent_opponent: Optional[BasePolicy] = None,
optim: Optional[torch.optim.Optimizer] = None,
) -> Tuple[dict, BasePolicy]:
# ======== environment setup =========
train_envs = DummyVectorEnv([get_env for _ in range(args.training_num)])
test_envs = DummyVectorEnv([get_env for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# ======== agent setup =========
policy, optim, agents = get_agents(
args, agent_learn=agent_learn, agent_opponent=agent_opponent, optim=optim
)
# ======== collector setup =========
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True,
)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
# ======== tensorboard logging setup =========
log_path = os.path.join(args.logdir, "tic_tac_toe", "dqn")
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
# ======== callback functions used during training =========
def save_best_fn(policy):
if hasattr(args, "model_save_path"):
model_save_path = args.model_save_path
else:
model_save_path = os.path.join(
args.logdir, "tic_tac_toe", "dqn", "policy.pth"
)
torch.save(
policy.policies[agents[args.agent_id - 1]].state_dict(), model_save_path
)
def stop_fn(mean_rewards):
return mean_rewards >= args.win_rate
def train_fn(epoch, env_step):
policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_train)
def test_fn(epoch, env_step):
policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_test)
def reward_metric(rews):
return rews[:, args.agent_id - 1]
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
update_per_step=args.update_per_step,
logger=logger,
test_in_train=False,
reward_metric=reward_metric,
)
return result, policy.policies[agents[args.agent_id - 1]]
# ======== a test function that tests a pre-trained agent ======
def watch(
args: argparse.Namespace = get_args(),
agent_learn: Optional[BasePolicy] = None,
agent_opponent: Optional[BasePolicy] = None,
) -> None:
env = get_env()
policy, optim, agents = get_agents(
args, agent_learn=agent_learn, agent_opponent=agent_opponent
)
policy.eval()
policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_test)
collector = Collector(policy, env, exploration_noise=True)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews[:, args.agent_id - 1].mean()}, length: {lens.mean()}")
if __name__ == "__main__":
# train the agent and watch its performance in a match!
args = get_args()
result, agent = train_agent(args)
# watch(args, agent)