-
-
Notifications
You must be signed in to change notification settings - Fork 903
/
Copy pathinverted_pendulum_v4.py
137 lines (108 loc) · 5.73 KB
/
inverted_pendulum_v4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
from gymnasium import utils
from gymnasium.envs.mujoco import MujocoEnv
from gymnasium.spaces import Box
DEFAULT_CAMERA_CONFIG = {
"trackbodyid": 0,
"distance": 2.04,
}
class InvertedPendulumEnv(MujocoEnv, utils.EzPickle):
"""
## Description
This environment is the cartpole environment based on the work done by
Barto, Sutton, and Anderson in ["Neuronlike adaptive elements that can
solve difficult learning control problems"](https://ieeexplore.ieee.org/document/6313077),
just like in the classic environments but now powered by the Mujoco physics simulator -
allowing for more complex experiments (such as varying the effects of gravity).
This environment involves a cart that can moved linearly, with a pole fixed on it
at one end and having another end free. The cart can be pushed left or right, and the
goal is to balance the pole on the top of the cart by applying forces on the cart.
## Action Space
The agent take a 1-element vector for actions.
The action space is a continuous `(action)` in `[-3, 3]`, where `action` represents
the numerical force applied to the cart (with magnitude representing the amount of
force and sign representing the direction)
| Num | Action | Control Min | Control Max | Name (in corresponding XML file) | Joint | Unit |
|-----|---------------------------|-------------|-------------|----------------------------------|-------|-----------|
| 0 | Force applied on the cart | -3 | 3 | slider | slide | Force (N) |
## Observation Space
The state space consists of positional values of different body parts of
the pendulum system, followed by the velocities of those individual parts (their derivatives)
with all the positions ordered before all the velocities.
The observation is a `ndarray` with shape `(4,)` where the elements correspond to the following:
| Num | Observation | Min | Max | Name (in corresponding XML file) | Joint | Unit |
| --- | --------------------------------------------- | ---- | --- | -------------------------------- | ----- | ------------------------- |
| 0 | position of the cart along the linear surface | -Inf | Inf | slider | slide | position (m) |
| 1 | vertical angle of the pole on the cart | -Inf | Inf | hinge | hinge | angle (rad) |
| 2 | linear velocity of the cart | -Inf | Inf | slider | slide | velocity (m/s) |
| 3 | angular velocity of the pole on the cart | -Inf | Inf | hinge | hinge | anglular velocity (rad/s) |
## Rewards
The goal is to make the inverted pendulum stand upright (within a certain angle limit)
as long as possible - as such a reward of +1 is awarded for each timestep that
the pole is upright.
## Starting State
All observations start in state
(0.0, 0.0, 0.0, 0.0) with a uniform noise in the range
of [-0.01, 0.01] added to the values for stochasticity.
## Episode End
The episode ends when any of the following happens:
1. Truncation: The episode duration reaches 1000 timesteps.
2. Termination: Any of the state space values is no longer finite.
3. Termination: The absolute value of the vertical angle between the pole and the cart is greater than 0.2 radian.
## Arguments
No additional arguments are currently supported.
```python
import gymnasium as gym
env = gym.make('InvertedPendulum-v4')
```
There is no v3 for InvertedPendulum, unlike the robot environments where a
v3 and beyond take `gymnasium.make` kwargs such as `xml_file`, `ctrl_cost_weight`, `reset_noise_scale`, etc.
```python
import gymnasium as gym
env = gym.make('InvertedPendulum-v2')
```
## Version History
* v4: All MuJoCo environments now use the MuJoCo bindings in mujoco >= 2.1.3
* v3: Support for `gymnasium.make` kwargs such as `xml_file`, `ctrl_cost_weight`, `reset_noise_scale`, etc. rgb rendering comes from tracking camera (so agent does not run away from screen)
* v2: All continuous control environments now use mujoco-py >= 1.50
* v1: max_time_steps raised to 1000 for robot based tasks (including inverted pendulum)
* v0: Initial versions release (1.0.0)
"""
metadata = {
"render_modes": [
"human",
"rgb_array",
"depth_array",
],
"render_fps": 25,
}
def __init__(self, **kwargs):
utils.EzPickle.__init__(self, **kwargs)
observation_space = Box(low=-np.inf, high=np.inf, shape=(4,), dtype=np.float64)
MujocoEnv.__init__(
self,
"inverted_pendulum.xml",
2,
observation_space=observation_space,
default_camera_config=DEFAULT_CAMERA_CONFIG,
**kwargs,
)
def step(self, a):
reward = 1.0
self.do_simulation(a, self.frame_skip)
ob = self._get_obs()
terminated = bool(not np.isfinite(ob).all() or (np.abs(ob[1]) > 0.2))
if self.render_mode == "human":
self.render()
return ob, reward, terminated, False, {}
def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform(
size=self.model.nq, low=-0.01, high=0.01
)
qvel = self.init_qvel + self.np_random.uniform(
size=self.model.nv, low=-0.01, high=0.01
)
self.set_state(qpos, qvel)
return self._get_obs()
def _get_obs(self):
return np.concatenate([self.data.qpos, self.data.qvel]).ravel()