-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathterraformer.py
365 lines (342 loc) · 11.7 KB
/
terraformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import client as snowflake_client
from resources import (
SnowflakeDatabase,
SnowflakeStage,
SnowflakeWarehouse,
SnowflakeRole,
SnowflakeSchema,
SnowflakePipe,
SnowflakeFileFormat,
)
import python_terraform
import argparse
import os
import logging
import data_parse_helper as dph
def getLogger(level=logging.INFO):
logger = logging.getLogger(__name__)
logging.basicConfig(level=level)
return logger
def tf_databases(t):
## DATABASES
# Get database info from snowflake, write an outline to terraform files,
# and run `terraform import` on each resource.
db_data = snowflake_client.exec_sql_multi("show databases")
columns = [
"created_on",
"name",
"is_default",
"is_current",
"origin",
"owner",
"comment",
"options",
"retention_time",
]
db_dicts = [{k: row[i] for i, k in enumerate(columns)} for row in db_data]
database_names = [db["name"] for db in db_dicts]
for row in db_dicts:
tfDatabase = SnowflakeDatabase(
attr_exclusion_rules=attr_exclusion_rules,
regex_exclusion_rules=regex_exclusion_rules,
**row,
)
tfDatabase.append_tf_code_to_file(file_dir=t.working_dir)
tfDatabase.append_import_command_to_file(
filename="generated_tf_snowflake_import_resources.sh"
)
return database_names
def tf_schemas(t, database_names):
## SCHEMAS
# Iterate through all the existing databases, get all the schemas, and turn
# them into terraform resources.
database_schemas = {}
for db in database_names:
# We may want to separate tf files by database
schema_data = snowflake_client.exec_sql_multi(f"show schemas in database {db}")
columns = [
"created_on",
"name",
"is_default",
"is_current",
"database_name",
"owner",
"comment",
"options",
"retention_time",
]
schema_dicts = [
{k: row[i] for i, k in enumerate(columns)} for row in schema_data
]
database_schemas[db] = [schema["name"] for schema in schema_dicts]
for schema in schema_dicts:
print("'" + schema["database_name"] + "'")
if schema["database_name"] == "RAW":
if any(
[
x in schema["name"]
for x in ["PUBLIC", "KINESIS_", "CHARM_EXTERNAL"]
]
):
# Special inclusion rules only for RAW DB to exclude Stitch schemas.
# only process if it's `public`, `kinesis_*`, or `charm_external`
# There isn't a clear way to make an exclusion rule for Stitch :(
tfSchema = SnowflakeSchema(
attr_exclusion_rules=attr_exclusion_rules,
regex_exclusion_rules=regex_exclusion_rules,
**schema,
)
tfSchema.append_tf_code_to_file(t.working_dir)
tfSchema.append_import_command_to_file(
filename="generated_tf_snowflake_import_resources.sh"
)
else:
# Otherwise proceed as normal
tfSchema = SnowflakeSchema(**schema)
tfSchema.append_tf_code_to_file(t.working_dir)
tfSchema.append_import_command_to_file(
filename="generated_tf_snowflake_import_resources.sh"
)
return database_schemas
def tf_stages(t, database_names):
## STAGES
# Iterate through every database, looking at the `information_schema` schema
# NOTE: We probably want to avoid special autoschemas, like `information_schema`
for database in database_names:
# NOTE: We may want to separate schema.tf files by database
columns = [
"created_on",
"name",
"database_name",
"schema_name",
"url",
"has_credentials",
"has_encryption_key",
"owner",
"comment",
"region",
"type",
"cloud",
"notification_channel",
"storage_integration",
]
query = f"show stages in database {database}"
snowflake_client.DATABASE = database
stage_data = snowflake_client.exec_sql_multi(query)
stage_dicts = [{k: row[i] for i, k in enumerate(columns)} for row in stage_data]
for row in stage_dicts:
stage_extra_data = snowflake_client.exec_sql_multi(
f"desc stage {database}.{row['schema_name']}.{row['name']}"
)
stage_dict = dph.stage_parser(stage_extra_data)
tfStage = SnowflakeStage(
attr_exclusion_rules=attr_exclusion_rules,
regex_exclusion_rules=regex_exclusion_rules,
extra_data=stage_dict,
**row,
)
tfStage.append_tf_code_to_file(t.working_dir)
tfStage.append_import_command_to_file(
filename="generated_tf_snowflake_import_resources.sh"
)
def tf_file_format(t, database_names):
## FILE_FORMATS
# Iterate through every database, looking at the `information_schema` schema
# and grabbing the `file_format` table.
for database in database_names:
query = f"show file formats"
snowflake_client.DATABASE = database
file_format_data = snowflake_client.exec_sql_multi(query)
columns = [
"created_on",
"name",
"database_name",
"schema_name",
"type",
"owner",
"comment",
"format_options",
]
file_format_dicts = [
{k: row[i] for i, k in enumerate(columns)} for row in file_format_data
]
for row in file_format_dicts:
tfFileFormat = SnowflakeFileFormat(
attr_exclusion_rules=attr_exclusion_rules,
regex_exclusion_rules=regex_exclusion_rules,
**row,
)
tfFileFormat.append_tf_code_to_file(t.working_dir)
tfFileFormat.append_import_command_to_file(
filename="generated_tf_snowflake_import_resources.sh"
)
def tf_warehouses(t):
## WAREHOUSES
wh_data = snowflake_client.exec_sql_multi("show warehouses")
columns = [
"name",
"state",
"type",
"size",
"min_cluster_count",
"max_cluster_count",
"started_clusters",
"running",
"queued",
"is_default",
"is_current",
"auto_suspend",
"auto_resume",
"available",
"provisioning",
"quiescing",
"other",
"created_on",
"resumed_on",
"updated_on",
"owner",
"comment",
"resource_monitor",
"actives",
"pendings",
"failed",
"suspended",
"uuid",
"scaling_policy",
]
columns_wo_cluster = [
"name",
"state",
"type",
"size",
"running",
"queued",
"is_default",
"is_current",
"auto_suspend",
"auto_resume",
"available",
"provisioning",
"quiescing",
"other",
"created_on",
"resumed_on",
"updated_on",
"owner",
"comment",
"resource_monitor",
"actives",
"pendings",
"failed",
"suspended",
"uuid",
]
try:
wh_dicts = [{k: row[i] for i, k in enumerate(columns)} for row in wh_data]
except IndexError:
wh_dicts = [{k: row[i] for i, k in enumerate(columns_wo_cluster)} for row in wh_data]
for row in wh_dicts:
addtl_params = snowflake_client.exec_sql_multi(
f"show parameters in warehouse {row['name']};"
)
cols = ["key", "value", "default", "level", "description", "type"]
addtl_params_dict = {
row[0].lower(): {k: row[i] for i, k in enumerate(cols)}["value"]
for row in addtl_params
}
row.update(addtl_params_dict)
tfWarehouse = SnowflakeWarehouse(
attr_exclusion_rules=attr_exclusion_rules,
regex_exclusion_rules=regex_exclusion_rules,
**row,
)
tfWarehouse.append_tf_code_to_file(t.working_dir)
tfWarehouse.append_import_command_to_file(
filename="generated_tf_snowflake_import_resources.sh"
)
def tf_roles(t):
## ROLES
role_data = snowflake_client.exec_sql_multi("show roles")
columns = [
"created_on",
"name",
"is_default",
"is_current",
"is_inherited",
"assigned_to_users",
"granted_to_roles",
"granted_roles",
"owner",
"comment",
]
role_dicts = [{k: row[i] for i, k in enumerate(columns)} for row in role_data]
for row in role_dicts:
tfRole = SnowflakeRole(
attr_exclusion_rules=attr_exclusion_rules,
regex_exclusion_rules=regex_exclusion_rules,
**row,
)
tfRole.append_tf_code_to_file(t.working_dir)
tfRole.append_import_command_to_file(
filename="generated_tf_snowflake_import_resources.sh"
)
def tf_pipes(t, database_names):
## PIPES
for database in database_names:
snowflake_client.DATABASE = database
query = f"select * from {database}.information_schema.pipes"
pipe_data = snowflake_client.query_to_df(query)
for _, row in pipe_data.iterrows():
tfPipe = SnowflakePipe(
attr_exclusion_rules=attr_exclusion_rules,
regex_exclusion_rules=regex_exclusion_rules,
**dict(row),
)
tfPipe.append_tf_code_to_file(t.working_dir)
tfPipe.append_import_command_to_file(
filename="generated_tf_snowflake_import_resources.sh"
)
## EXCLUSIONS:
# These are things you *don't* want Terraform to manage.
# You won't catch all the exclusions, so make sure to review your import statements
# and make sure you are not importing something that you don't want to import.
attr_exclusion_rules = {
# Any resource with an attribute named [key] with a value of [value] will be excluded.
"owner": ["okta_provisioner"],
"schema": ["information_schema"],
"database": ["snowflake"],
}
regex_exclusion_rules = {
# Any class instance [key] with the `name` attribute matching the regex
# pattern [value] will be excluded.
# all regex rules should be in lowercase
SnowflakeSchema: [
"^information_schema$",
r"\d{4}_\d{2}_\d{2}_\d{2}", # date format of schemas generated dynamically by our airflow dags
r"_temp_",
],
SnowflakeRole: [
"^sysadmin$",
"^accountadmin$",
"^securityadmin$",
"^useradmin$",
"^public$", # ^ and $ prevent regex matching a substring
"^reader_demo_db$",
],
SnowflakeDatabase: ["^snowflake$", "snowflake_sample_data"],
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
this_dir = os.path.dirname(os.path.realpath(__file__))
parser.add_argument("--tf_dir", default=os.path.join(this_dir, "../snowflake"))
args = parser.parse_args()
tf_dir = os.path.abspath(args.tf_dir)
print("note that tf_dir is set to: ", tf_dir)
t = python_terraform.Terraform(working_dir=tf_dir)
# t.init()
database_names = tf_databases(t)
tf_file_format(t, database_names)
database_schemas = tf_schemas(t, database_names)
tf_stages(t, database_names)
tf_warehouses(t)
tf_pipes(t, database_names)