-
Notifications
You must be signed in to change notification settings - Fork 420
/
prompt.py
209 lines (193 loc) · 8.96 KB
/
prompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import transformers
from utils import printf
import copy
class prompt:
def __init__(self, tokenizer, max_len, add_eos=True):
self.tokenizer = tokenizer
self.max_len = max_len
self.add_eos=add_eos
class instruct_prompt(prompt):
prompt = (
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
)
prompt_input = (
"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
"### Instruction:{instruction}\n\n### Input:{input}\n\n### Response:"
)
prompt_history = "User:{input}\n\nAssistant:{output}\n\n"
prompt_post = "User:{input}\n\nAssistant:"
def preprocess_gen(self, data_point):
if 'history' not in data_point:
# single instruction format {'instruction':..,'input':..}
if 'input' in data_point:
user_prompt = self.prompt_input.format_map(data_point)
else:
user_prompt = self.prompt.format_map(data_point)
else:
# multi turn format {'history':[..], 'input':[..]}
user_prompt = "\n".join(["User:" + i['input']+"\n"+"Assistant:" + i['output'] for i in data_point['history']]) + "\nUser:" + data_point['input'] + "\nAssistant:"
user_prompt = user_prompt[-self.max_len:]
user_prompt=self.prompt.format_map({'instruction':user_prompt})
input_ids = self.tokenizer(user_prompt)["input_ids"]
return input_ids
def preprocess_train(self, data_point):
# single instruction format {'instruction':..,'input':..,'output':..}
if 'instruction' in data_point:
if 'input' in data_point:
user_prompt = self.prompt_input.format_map(data_point)
else:
user_prompt = self.prompt.format_map(data_point)
output = data_point["output"]
# multi turn format {'input':[..], 'output':[..]}
else:
user_prompt = ''
lens = len(data_point['input'])
for i in range(lens-1):
user_prompt += self.prompt_history.format_map({'input':data_point['input'][i],'output':data_point['output'][i]})
user_prompt += self.prompt_post.format_map({'input':data_point['input'][-1]})
user_prompt = self.prompt.format_map({'instruction': user_prompt})
output = data_point['output'][-1]
len_user_prompt_tokens = (len(self.tokenizer(
user_prompt,
truncation=True,
max_length=self.max_len + 1,
)["input_ids"])- 1) # no eos token
full_tokens = self.tokenizer(
user_prompt + output,
truncation=True,
max_length=self.max_len + 1,
padding="max_length",
)["input_ids"][:-1]
return {
"input_ids": full_tokens,
"labels": [-100] * len_user_prompt_tokens
+ full_tokens[len_user_prompt_tokens:],
"attention_mask": [1] * (len(full_tokens)),
}
def data_collator(self,):
return transformers.DataCollatorForLanguageModeling(self.tokenizer, mlm=False)
def postprocess(self, text, render=True):
#import pdb;pdb.set_trace()
printf(text)
output = text.split("### Response:")[1].strip()
output = output.replace("Belle", "Vicuna")
printf(output)
if '###' in output:
output = output.split("###")[0]
if 'User' in output:
output = output.split("User")[0]
output = output.replace('�','').replace('</s>', '')
if render:
# fix gradio chatbot markdown code render bug
lines = output.split("\n")
for i, line in enumerate(lines):
if "```" in line:
if line != "```":
lines[i] = f'<pre><code class="language-{lines[i][3:]}">'
else:
lines[i] = '</code></pre>'
else:
if i > 0:
lines[i] = "<br/>" + line.replace("<", "<").replace(">", ">").replace("__", '\_\_')
output = "".join(lines)
# output = output.replace('<br/><pre>','\n<pre>') work for html; but not for gradio
return output
class chat_prompt(prompt):
prompt_pre = (
"The following is a conversation between an AI assistant called Assistant and a human user called User. "
"The assistant is intelligent, knowledgeable and polite to answer questions of user.\n\n"
)
prompt_history = "User:{input}\n\nAssistant:{output}\n\n"
prompt_post = "User:{input}\n\nAssistant:"
def preprocess_gen(self, data_point):
user_prompt = self.prompt_pre
len_avail = self.max_len - len(self.tokenizer(user_prompt, add_special_tokens=False)['input_ids'])
input_prompt = self.prompt_post.format_map({'input':data_point['input']})
len_avail -= len(self.tokenizer(input_prompt, add_special_tokens=False)['input_ids'])
lens = len(data_point['history'])
tokenized_lens = []
for i in range(lens):
tmp_prompt = self.prompt_history.format_map(data_point['history'][i])
tokenized_lens.append(len(self.tokenizer(tmp_prompt,add_special_tokens=False)["input_ids"]))
# 启发式:/2 优先除前面的
i = 0
while sum(tokenized_lens) > len_avail and i < lens:
history = data_point['history'][i]
tmp_len1 = len(history['input'])
tmp_len2 = len(history['output'])
if tmp_len2 > tmp_len1:
history['output'] = history['output'][:tmp_len2//2]
else:
history['input'] = history['input'][:tmp_len1//2]
prompt = self.prompt_history.format_map(history)
single_len =(len(self.tokenizer(prompt,add_special_tokens=False)["input_ids"]))
tokenized_lens[i] = single_len
i += 1
total_len = sum(tokenized_lens)
# 还不够的话 直接截断
while total_len > len_avail and i < lens - 1 :
total_len -= tokenized_lens[i]
data_point['history'] = data_point['history'][1:]
i += 1
# 最终合并
for i in range(lens):
user_prompt += self.prompt_history.format_map(data_point['history'][i])
user_prompt += input_prompt
printf({'real_input:':user_prompt})
inputs = self.tokenizer(user_prompt)["input_ids"]
return inputs
def preprocess_train(self, data_point):
user_prompt = self.prompt_pre
lens = len(data_point['input'])
for i in range(lens-1):
user_prompt += self.prompt_history.format_map({'input':data_point['input'][i].strip(),'output':data_point['output'][i].strip()})
user_prompt += self.prompt_post.format_map({'input':data_point['input'][-1].strip()})
len_user_prompt_tokens = len(self.tokenizer(
user_prompt,
truncation=True,
max_length=self.max_len,
)["input_ids"]) - 1 # remove extra eos
if self.add_eos:
full_tokens = self.tokenizer(
user_prompt + data_point["output"][-1].strip(),
truncation=True,
padding=False,
max_length=self.max_len,
)["input_ids"] # need eos
else:
full_tokens = self.tokenizer(
user_prompt + data_point["output"][-1].strip(),
truncation=True,
padding=False,
max_length=self.max_len+1,
)["input_ids"][:-1] # delete eos
return {
"input_ids": full_tokens,
"labels": [-100] * len_user_prompt_tokens + full_tokens[len_user_prompt_tokens:],
"attention_mask": [1] * (len(full_tokens)),
}
def data_collator(self,):
return transformers.DataCollatorForSeq2Seq(self.tokenizer)
def postprocess(self, text, render=False):
output = text.split("Assistant:")[-1].strip()
if 'User:' in output:
output = output.split("User:")[0]
output = output.replace('�','')
if render:
# fix gradio chatbot markdown code render bug
lines = output.split("\n")
for i, line in enumerate(lines):
if "```" in line:
if line != "```":
lines[i] = f'<pre><code class="language-{lines[i][3:]}">'
else:
lines[i] = '</code></pre>'
else:
if i > 0:
lines[i] = "<br/>" + line.replace("<", "<").replace(">", ">").replace("__", '\_\_')
output = "".join(lines)
# output = output.replace('<br/><pre>','\n<pre>') work for html; but not for gradio
return output
def get_data_collator():
return transformers.DataCollatorForLanguageModeling