-
Notifications
You must be signed in to change notification settings - Fork 420
/
finetune_chat.py
274 lines (260 loc) · 11.6 KB
/
finetune_chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from peft import (
prepare_model_for_int8_training,
LoraConfig,
PeftModel,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
)
from transformers import LlamaForCausalLM, LlamaTokenizer, TrainerCallback, GenerationConfig
import os
import sys
import torch
import torch.nn as nn
import bitsandbytes as bnb
from datasets import load_dataset, Dataset
import transformers
from huggingface_hub import snapshot_download
import argparse
import warnings
from tqdm import tqdm
from functools import partial
import utils
import prompt
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
# 0. prepare args and logger
parser = argparse.ArgumentParser()
parser.add_argument("--wandb", action="store_true", default=False)
parser.add_argument("--prompt_type", type=str, default="chat")
parser.add_argument("--data_path", type=str, default="merge.json")
parser.add_argument("--output_path", type=str, default="lora-Vicuna")
parser.add_argument("--model_path", type=str, default="decapoda-research/llama-7b-hf")
parser.add_argument("--num_epoch", type=int, default=3)
parser.add_argument("--micro_batch", type=int, default=4)
parser.add_argument("--total_batch", type=int, default=128)
parser.add_argument("--log_steps", type=int, default=100)
parser.add_argument("--eval_steps", type=int, default=200)
parser.add_argument("--save_steps", type=int, default=200)
parser.add_argument("--warmup_ratio", type=float, default=0.05)
parser.add_argument("--test_size", type=int, default=200)
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
parser.add_argument("--lora_remote_checkpoint", type=str, default=None)
parser.add_argument("--ignore_data_skip", type=bool, default=False)
args = parser.parse_args()
if not args.wandb:
os.environ["WANDB_MODE"] = "disable"
MICRO_BATCH_SIZE = args.micro_batch # this could actually be 5 but i like powers of 2
BATCH_SIZE = args.total_batch
MAX_STEPS = None
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
EPOCHS = args.num_epoch
LEARNING_RATE = 3e-4 # the Karpathy constant
CUTOFF_LEN = 2048
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT = 0.05
USE_8bit = True
VAL_SET_SIZE = args.test_size # 2000
TARGET_MODULES = [
"q_proj",
"v_proj",
"k_proj",
"o_proj",
"down_proj",
"gate_proj",
"up_proj",
]
DATA_PATH = args.data_path
OUTPUT_DIR = args.output_path # "lora-Vicuna"
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size
# we must make sure batch_size and gradient_accumulation_steps not changed for resuming training.
if args.resume_from_checkpoint:
old_args_path = os.path.join(args.resume_from_checkpoint, 'training_args.bin')
if os.path.exists(old_args_path):
old_args = torch.load(old_args_path)
if MICRO_BATCH_SIZE != old_args.per_device_train_batch_size:
raise Exception(
f'current micro batch size {MICRO_BATCH_SIZE} is not equal to the old {old_args.per_device_train_batch_size},'
' This will cause the trainer skips wrong epochs or steps.'
f'please change your micro batch size to {old_args.per_device_train_batch_size}'
' or cancel resuming your training'
)
if GRADIENT_ACCUMULATION_STEPS != old_args.gradient_accumulation_steps:
raise Exception(
f'current total batch {BATCH_SIZE} is not equal to the old {old_args.gradient_accumulation_steps*old_args.per_device_train_batch_size},'
' This will cause the trainer skips wrong epochs or steps.'
f'please change your total batch size to {old_args.gradient_accumulation_steps*old_args.per_device_train_batch_size}'
' or cancel resuming your training'
)
else:
raise Exception(f'{old_args_path} is not exist!')
# checkpoint = os.path.join(args.resume_from_checkpoint, 'pytorch_model.bin')
logger = utils.set_file_logger(__name__,OUTPUT_DIR)
# 1. load dataset
logger.info(f'>>> processing data from {DATA_PATH}')
logger.info(f'>>> using {args}')
train_tokenizer = LlamaTokenizer.from_pretrained(args.model_path, add_eos_token=True)
assert train_tokenizer.eos_token_id == 2, "Tokenizer eos is wrong!!!"
# unk. we want this to be different from the eos token
train_tokenizer.pad_token_id = 0
# cannot use eos in generation!
# tokenizer.padding_side = "left" # Allow batched inference
test_tokenizer = LlamaTokenizer.from_pretrained(args.model_path)
if args.prompt_type == 'instruct':
PROMPT = prompt.instruct_prompt(train_tokenizer, CUTOFF_LEN)
elif args.prompt_type == 'chat':
PROMPT = prompt.chat_prompt(train_tokenizer,CUTOFF_LEN)
else:
raise Exception('not support')
# check tokenizer
data = load_dataset('json', data_files=DATA_PATH)
import random;start = random.randint(1, 100)
examples = Dataset.from_dict(data['train'][start:start+5]).map(PROMPT.preprocess_train)
for example in examples:
logger.info(f'>>> using prompt {args.prompt_type}, prompt example:\n { train_tokenizer.decode(example["input_ids"]) }')
logger.info(f'>>> tokenizer labels: { train_tokenizer.decode([ 0 if l==-100 else l for l in example["labels"]])}')
logger.info(f'>>> tokenizer example: { example["input_ids"][:10] }...{ example["input_ids"][-10:]}')
# 2. load model and checkpoints
logger.info(f'>>> load model from {args.model_path}')
# if USE_8bit is True:
# assert bnb.__version__ >= '0.37.2', "Please downgrade bitsandbytes's version, for example: pip install bitsandbytes==0.37.2"
model = LlamaForCausalLM.from_pretrained(
args.model_path,
load_in_8bit=USE_8bit,
device_map=device_map,
torch_dtype=torch.float16,
)
if USE_8bit is True:
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=TARGET_MODULES,
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
if args.resume_from_checkpoint:
checkpoint_name = os.path.join(args.resume_from_checkpoint, "pytorch_model.bin")
# adapter_model.bin
if not os.path.exists(checkpoint_name):
pytorch_bin_path = checkpoint_name
checkpoint_name = os.path.join(args.resume_from_checkpoint, "adapter_model.bin")
if os.path.exists(checkpoint_name):
os.rename(checkpoint_name, pytorch_bin_path)
logger.warning("The file name of the lora checkpoint'adapter_model.bin' is replaced with 'pytorch_model.bin'")
else:
args.resume_from_checkpoint = None # So the trainer won't try loading its state
# pytorch_model.bin
if os.path.exists(checkpoint_name):
logger.info(f'>>> load lora from {checkpoint_name}')
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
raise Exception(f"Checkpoint {checkpoint_name} not found with resume_from_checkpoint=True!")
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
num_params = param.numel()
# if using DS Zero 3 and the weights are initialized empty
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
all_param += num_params
if param.requires_grad:
trainable_params += num_params
logger.info(f">>> trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}")
# 3. speedup dataset processing by multi-process
num_proc = 1#(os.cpu_count())
if VAL_SET_SIZE > 0:
train_val = data["train"].train_test_split(test_size=VAL_SET_SIZE, shuffle=True, seed=42)
train_data = train_val["train"].shuffle().map(PROMPT.preprocess_train, num_proc=num_proc)
val_data = train_val["test"].shuffle().map(PROMPT.preprocess_train, num_proc=num_proc)
else:
train_data = data["train"].shuffle().map(PROMPT.preprocess_train, num_proc=num_proc)
val_data = None
now_max_steps = max((len(data["train"]) - VAL_SET_SIZE) // BATCH_SIZE * EPOCHS, EPOCHS)
if args.resume_from_checkpoint:
# the trainer will ignore the state max_steps and caculate max_steps based on epochs,
# so we mannally set the args.max_step to override it.
if args.lora_remote_checkpoint is not None:
snapshot_download(repo_id=args.lora_remote_checkpoint, allow_patterns=["*.pt", "*.bin", "*.json"], local_dir=args.resume_from_checkpoint)
train_state_path = os.path.join(args.resume_from_checkpoint, "trainer_state.json")
if os.path.exists(train_state_path):
import json
base_train_args = json.load(open(train_state_path, 'r'))
base_max_steps = base_train_args["max_steps"]
resume_scale = base_max_steps / now_max_steps
if base_max_steps > now_max_steps:
logger.warning(f"epoch {EPOCHS}:{MAX_STEPS} replace to the base_max_steps {base_max_steps}")
EPOCHS = None
MAX_STEPS = base_max_steps
else:
MAX_STEPS = now_max_steps
assert MAX_STEPS is not None
else:
MAX_STEPS = now_max_steps
# 4. start training
class CustomCallback(TrainerCallback):
def __init__(self, trainer) -> None:
super().__init__()
self.trainer = trainer
self.generation_config = GenerationConfig(
temperature=1.0,
top_p=0.75,
top_k=40,
num_beams=2,
bos_token_id=train_tokenizer.bos_token_id,
eos_token_id=train_tokenizer.eos_token_id,
pad_token_id=train_tokenizer.pad_token_id,
max_new_tokens=1024, # max_length=max_new_tokens+input_sequence
min_new_tokens=1, # min_length=min_new_tokens+input_sequence
bad_words_ids=test_tokenizer(['\n\nUser:','\n\nAssistant:'], add_special_tokens=False).input_ids
)
self.repetition_penalty=1.3
self.logger = utils.set_file_logger('transformers.trainer', trainer.args.output_dir)
def on_log(self, args, state, control, logs, **kwargs):
logger.info(logs)
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=MICRO_BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
warmup_ratio=args.warmup_ratio,
num_train_epochs=EPOCHS,
max_steps=MAX_STEPS,
learning_rate=LEARNING_RATE,
fp16=True,
logging_steps=args.log_steps,
logging_first_step=True, # convenient
evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no",
save_strategy="steps",
eval_steps=args.eval_steps if VAL_SET_SIZE > 0 else None,
save_steps=args.save_steps,
output_dir=OUTPUT_DIR,
load_best_model_at_end=True if VAL_SET_SIZE > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
report_to="wandb" if args.wandb else [],
ignore_data_skip=args.ignore_data_skip,
),
data_collator=PROMPT.data_collator()
)
trainer.add_callback(CustomCallback(trainer))
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)
model.save_pretrained(OUTPUT_DIR)