A pytest plugin for asserting data against voluptuous schema.
Common use case is to validate HTTP API responses (in your functional tests):
import requests
from pytest_voluptuous import S, Partial, Exact
from voluptuous.validators import All, Length
def test_pypi():
resp = requests.get('https://pypi.org/pypi/pytest/json')
assert S({
'info': Partial({
'package_url': 'https://pypi.org/project/pytest/',
'platform': 'INVALID VALUE',
'description': Length(max=10),
'downloads': list,
'classifiers': dict,
}),
'releases': dict,
'urls': int
}) == resp.json()
If validation fails, comparison returns False
and assert fails, printing error details like:
E AssertionError: assert failed due to validation error(s): E - info.platform: not a valid value for dictionary value (actual: 'unix') E - info.description: length of value must be at most 10 for dictionary value (actual: ".. image:: https://...") E - info.downloads: expected list for dictionary value (actual: {'last_month': -1, 'last_week': -1, 'last_day': -1}) E - info.classifiers: expected dict for dictionary value (actual: [u'Development Status :: 6 - Mature', ...]) E - last_serial: extra keys not allowed (actual: 4422291) E - urls: expected int (actual: [{u'has_sig': False, u'upload_time': u'2018-10-27T16:31:24', ...}])
Works on python 2.7 and 3.4+:
pip install pytest-voluptuous
See CHANGELOG.
- Provides utility schemas (
S
,Exact
andPartial
) to cut down boilerplate. - Implement a pytest hook to provide error details on
assert
failure. - Print descriptive validation failure messages.
Equal
andUnordered
validators (contributed to voluptuous project, available in 0.10+).
Because writing:
>>> r = {'info': {'package_url': 'https://pypi.org/pypi/pytest'}}
>>> assert 'info' in r
>>> assert 'package_url' in r['info']
>>> assert r['info']['package_url'] == 'https://pypi.org/pypi/pytest'
...is just way too annoying.
Why not JSON schema? It's too verbose, too inconvenient. JSON schema will never match the convenience of a validation library that can utilize the goodies of the platform.
Why voluptuous and not some other library? No special reason - but it's pretty easy to use and understand. Also, the syntax is quite compact.
Start by specifying a schema:
>>> from pytest_voluptuous import S, Partial, Exact
>>> from voluptuous.validators import All, Length
>>> schema = S({
... 'info': Partial({
... 'package_url': 'https://pypi.org/project/pytest/',
... 'platform': 'unix',
... 'description': Length(min=100),
... 'downloads': dict,
... 'classifiers': list,
... }),
... 'urls': list
... })
Then load up the data to validate:
>>> import requests
>>> data = requests.get('https://pypi.org/pypi/pytest/json').json()
Now if you assert this, the data will be validated against the schema, but instead of raising an error, the comparison
will just evaluate to False
which fails the assert:
>>> assert data == schema
Traceback (most recent call last):
...
AssertionError
Now getting AssertionError
in case the data doesn't match the schema is not very nice but don't worry - there's
no pytest magic in play here but once you run through pytest you'll rather get:
E AssertionError: assert failed due to validation error(s): E - info.platform: not a valid value for dictionary value (actual: 'unix') E - info.description: length of value must be at most 10 for dictionary value (actual: ".. image:: https://docs.pytest.org/en/latest/_static/pytest1.png\n :target: https://docs.pytest.org/en/latest/\n :align: center\n :alt: pytest\n\n\n------\n\n.. image:: https://img.shields.io/pypi/v/pytest.svg\n :target: https://pypi.org/project/pytest/\n\n.. image:: https://img.shields.io/conda/vn/conda-forge/pytest.svg\n :target: https://anaconda.org/conda-forge/pytest\n\n.. image:: https://img.shields.io/pypi/pyversions/pytest.svg\n :target: https://pypi.org/project/pytest/\n\n.. image:: https://codecov.io/gh/pytest-dev/pytest/branch/master/graph/badge.svg\n :target: https://codecov.io/gh/pytest-dev/pytest\n :alt: Code coverage Status\n\n.. image:: https://travis-ci.org/pytest-dev/pytest.svg?branch=master\n :target: https://travis-ci.org/pytest-dev/pytest\n\n.. image:: https://ci.appveyor.com/api/projects/status/mrgbjaua7t33pg6b?svg=true\n :target: https://ci.appveyor.com/project/pytestbot/pytest\n\n.. image:: https://img.shields.io/badge/code%20style-black-000000.svg\n :target: https://github.com/ambv/black\n\n.. image:: https://www.codetriage.com/pytest-dev/pytest/badges/users.svg\n :target: https://www.codetriage.com/pytest-dev/pytest\n\nThe ``pytest`` framework makes it easy to write small tests, yet\nscales to support complex functional testing for applications and libraries.\n\nAn example of a simple test:\n\n.. code-block:: python\n\n # content of test_sample.py\n def inc(x):\n return x + 1\n\n\n def test_answer():\n assert inc(3) == 5\n\n\nTo execute it::\n\n $ pytest\n ============================= test session starts =============================\n collected 1 items\n\n test_sample.py F\n\n ================================== FAILURES ===================================\n _________________________________ test_answer _________________________________\n\n def test_answer():\n > assert inc(3) == 5\n E assert 4 == 5\n E + where 4 = inc(3)\n\n test_sample.py:5: AssertionError\n ========================== 1 failed in 0.04 seconds ===========================\n\n\nDue to ``pytest``'s detailed assertion introspection, only plain ``assert`` statements are used. See `getting-started <https://docs.pytest.org/en/latest/getting-started.html#our-first-test-run>`_ for more examples.\n\n\nFeatures\n--------\n\n- Detailed info on failing `assert statements <https://docs.pytest.org/en/latest/assert.html>`_ (no need to remember ``self.assert*`` names);\n\n- `Auto-discovery\n <https://docs.pytest.org/en/latest/goodpractices.html#python-test-discovery>`_\n of test modules and functions;\n\n- `Modular fixtures <https://docs.pytest.org/en/latest/fixture.html>`_ for\n managing small or parametrized long-lived test resources;\n\n- Can run `unittest <https://docs.pytest.org/en/latest/unittest.html>`_ (or trial),\n `nose <https://docs.pytest.org/en/latest/nose.html>`_ test suites out of the box;\n\n- Python 2.7, Python 3.4+, PyPy 2.3, Jython 2.5 (untested);\n\n- Rich plugin architecture, with over 315+ `external plugins <http://plugincompat.herokuapp.com>`_ and thriving community;\n\n\nDocumentation\n-------------\n\nFor full documentation, including installation, tutorials and PDF documents, please see https://docs.pytest.org/en/latest/.\n\n\nBugs/Requests\n-------------\n\nPlease use the `GitHub issue tracker <https://github.com/pytest-dev/pytest/issues>`_ to submit bugs or request features.\n\n\nChangelog\n---------\n\nConsult the `Changelog <https://docs.pytest.org/en/latest/changelog.html>`__ page for fixes and enhancements of each version.\n\n\nLicense\n-------\n\nCopyright Holger Krekel and others, 2004-2018.\n\nDistributed under the terms of the `MIT`_ license, pytest is free and open source software.\n\n.. _`MIT`: https://github.com/pytest-dev/pytest/blob/master/LICENSE\n\n\n") E - info.downloads: expected list for dictionary value (actual: {'last_month': -1, 'last_week': -1, 'last_day': -1}) E - info.classifiers: expected dict for dictionary value (actual: [u'Development Status :: 6 - Mature', u'Intended Audience :: Developers', u'License :: OSI Approved :: MIT License', u'Operating System :: MacOS :: MacOS X', u'Operating System :: Microsoft :: Windows', u'Operating System :: POSIX', u'Programming Language :: Python :: 2', u'Programming Language :: Python :: 2.7', u'Programming Language :: Python :: 3', u'Programming Language :: Python :: 3.4', u'Programming Language :: Python :: 3.5', u'Programming Language :: Python :: 3.6', u'Programming Language :: Python :: 3.7', u'Topic :: Software Development :: Libraries', u'Topic :: Software Development :: Testing', u'Topic :: Utilities']) E - last_serial: extra keys not allowed (actual: 4422291) E - urls: expected int (actual: [{u'has_sig': False, u'upload_time': u'2018-10-27T16:31:24', u'comment_text': u'', u'python_version': u'py2.py3', u'url': u'https://files.pythonhosted.org/packages/02/75/d041ed00994fbac4c5183e6f4bf6c906506bef8da7a57ef3fc825f171020/pytest-3.9.3-py2.py3-none-any.whl', u'md5_digest': u'150289b7b6658b62b3eddb96c4474e9d', u'downloads': -1, u'requires_python': u'>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*', u'filename': u'pytest-3.9.3-py2.py3-none-any.whl', u'packagetype': u'bdist_wheel', u'digests': {u'sha256': u'bf47e8ed20d03764f963f0070ff1c8fda6e2671fc5dd562a4d3b7148ad60f5ca', u'md5': u'150289b7b6658b62b3eddb96c4474e9d'}, u'size': 214163}, {u'has_sig': False, u'upload_time': u'2018-10-27T16:31:26', u'comment_text': u'', u'python_version': u'source', u'url': u'https://files.pythonhosted.org/packages/28/09/f73d49a5b0b714e2d4712f044686cb8fa954aac15f4b7ea557049210179f/pytest-3.9.3.tar.gz', u'md5_digest': u'32ca214ba15bbd8680d9d807a371c385', u'downloads': -1, u'requires_python': u'>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*', u'filename': u'pytest-3.9.3.tar.gz', u'packagetype': u'sdist', u'digests': {u'sha256': u'a9e5e8d7ab9d5b0747f37740276eb362e6a76275d76cebbb52c6049d93b475db', u'md5': u'32ca214ba15bbd8680d9d807a371c385'}, u'size': 882503}])
Use ==
operator to do exact validation:
>>> data = {'foo': 1, 'bar': True}
>>> S({'foo': 1, 'bar': True}) == data
True
We omit assert
in these examples (for easier doctesting).
Use <=
to do partial validation (to allow extra keys, that is):
>>> S({'foo': 1}) == data # not valid
False
>>> S({'foo': 1}) <= data # valid
True
The operator you choose gets inherited, so with test data of:
>>> data = {
... 'outer1': {
... 'inner1': 1,
... 'inner2': True
... },
... 'outer2': 'foo'
... }
With ==
you must provide exact value also in nested context:
>>> S({
... 'outer1': {
... 'inner1': 1, # this would be valid but...
... # missing 'inner2'
... },
... 'outer2': 'foo'
... }) == data
False
>>> S({
... 'outer1': {
... 'inner1': int, # exact/partial matching
... 'inner2': bool # is for keys only
... },
... 'outer2': 'foo'
... }) == data
True
<=
implies partial matching:
>>> S({
... 'outer1': {
... 'inner1': int,
... # 'inner2' missing but that's ok
... },
... # 'outer2' is missing too
... }) <= data
True
When you need to mix and match operators, you can loosen matching with Partial
:
>>> S({
... 'outer1': Partial({
... 'inner1': int
... # 'inner2' ok to omit as scope is partial
... }),
... 'outer2': 'foo' # can't be missing as outer scope is exact
... }) == data
True
And stricten with Exact
:
>>> S({
... 'outer1': Exact({
... 'inner1': int,
... 'inner2': bool
... }),
... # 'outer2' can be missing as outer scope is partial
... }) <= data
True
Remember, matching mode is inherited, so you may end up doing stuff like this:
>>> data['outer1']['inner1'] = {'prop': 1}
>>> S({
... 'outer1': Partial({
... 'inner1': Exact({
... 'prop': 1
... })
... }),
... 'outer2': 'foo'
... }) == data
True
There is no >=
. If you want to declare schema keys that may be missing, use Optional
:
>>> from voluptuous.schema_builder import Optional
>>> S({Optional('foo'): str}) == {'extra': 1}
False
>>> S({'foo': str}) == {}
False
>>> S({'foo': str}) <= {}
False
>>> S({Optional('foo'): str}) == {}
True
>>> S({Optional('foo'): str}) <= {'extra': 1}
True
Or, if you want to make all keys optional, override required
:
>>> from voluptuous.schema_builder import Required
>>> S({'foo': str}, required=False) == {}
True
In these cases, if you want to require a key:
>>> S({'foo': str, Required('bar'): 1}, required=False) == {}
False
>>> S({'foo': str, Required('bar'): 1}, required=False) == {'bar': 1}
True
That's it. For available validators, look into voluptuous docs.
Voluptuous 0.9.3 and earlier:
In voluptuous pre-0.10.2 []
matches any list, not an empty list. To declare an empty list, use Equal([])
.
Similarly, in voluptuous pre-0.10.2, {}
doesn't always match an empty dict. If you're inside a
Schema({...}, extra=PREVENT_EXTRA)
(or Exact
), {}
does indeed match exactly {}
. However, inside
Schema({...}, extra=ALLOW_EXTRA) (or ``Partial
), it matches any dict (because any extra keys are allowed).
To declare an empty dict, use Equal({})
.
Voluptuous 0.10.0+:
In voluptuous 0.10.0+ {}
and []
evaluate as empty dict and empty list, so you don't need above workarounds.
Always use dict
and list
to validate dict or list of any size. It works despite voluptuous version.
Any version:
[str, int]
matches any list that contains both strings and ints (in any order and 1-n times). To validate
a list of fixed length with those types in it, use ExactSequence([str, int])
and Unordered([str, int])
when the order has no meaning. You can also use values inside these as in ExactSequence([2, 3])
.
Apache 2.0 licensed. See LICENSE for more details.