-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathexperimental_temperature.py
208 lines (168 loc) · 8.44 KB
/
experimental_temperature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
from torch import nn, einsum
from einops import rearrange, repeat
import torch.nn.functional as F
import math
from comfy import model_management
import types
import os
def exists(val):
return val is not None
# better than a division by 0 hey
abs_mean = lambda x: torch.where(torch.isnan(x) | torch.isinf(x), torch.zeros_like(x), x).abs().mean()
class temperature_patcher():
def __init__(self, temperature, layer_name="None"):
self.temperature = temperature
self.layer_name = layer_name
# taken from comfy.ldm.modules
def attention_basic_with_temperature(self, q, k, v, extra_options, mask=None, attn_precision=None):
if isinstance(extra_options, int):
heads = extra_options
else:
heads = extra_options['n_heads']
b, _, dim_head = q.shape
dim_head //= heads
scale = dim_head ** -0.5
h = heads
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
# force cast to fp32 to avoid overflowing
if attn_precision == torch.float32:
sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
else:
sim = einsum('b i d, b j d -> b i j', q, k) * scale
del q, k
if exists(mask):
if mask.dtype == torch.bool:
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
else:
if len(mask.shape) == 2:
bs = 1
else:
bs = mask.shape[0]
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
sim.add_(mask)
# attention, what we cannot get enough of
sim = sim.div(self.temperature if self.temperature > 0 else abs_mean(sim)).softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return out
layers_SD15 = {
"input":[1,2,4,5,7,8],
"middle":[0],
"output":[3,4,5,6,7,8,9,10,11],
}
layers_SDXL = {
"input":[4,5,7,8],
"middle":[0],
"output":[0,1,2,3,4,5],
}
class ExperimentalTemperaturePatch:
@classmethod
def INPUT_TYPES(s):
required_inputs = {f"{key}_{layer}": ("BOOLEAN", {"default": False}) for key, layers in s.TOGGLES.items() for layer in layers}
required_inputs["model"] = ("MODEL",)
required_inputs["Temperature"] = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, "round": 0.01})
required_inputs["Attention"] = (["both","self","cross"],)
return {"required": required_inputs}
TOGGLES = {}
RETURN_TYPES = ("MODEL","STRING",)
RETURN_NAMES = ("Model","String",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/Standalone_temperature_patches"
def patch(self, model, Temperature, Attention, **kwargs):
m = model.clone()
levels = ["input","middle","output"]
parameters_output = {level:[] for level in levels}
for key, toggle_enabled in kwargs.items():
current_level = key.split("_")[0]
if current_level in levels and toggle_enabled:
b_number = int(key.split("_")[1])
parameters_output[current_level].append(b_number)
patcher = temperature_patcher(Temperature,key)
if Attention in ["both","self"]:
m.set_model_attn1_replace(patcher.attention_basic_with_temperature, current_level, b_number)
if Attention in ["both","cross"]:
m.set_model_attn2_replace(patcher.attention_basic_with_temperature, current_level, b_number)
parameters_as_string = "\n".join(f"{k}: {','.join(map(str, v))}" for k, v in parameters_output.items())
parameters_as_string = f"Temperature: {Temperature}\n{parameters_as_string}\nAttention: {Attention}"
return (m, parameters_as_string,)
ExperimentalTemperaturePatchSDXL = type("ExperimentalTemperaturePatch_SDXL", (ExperimentalTemperaturePatch,), {"TOGGLES": layers_SDXL})
ExperimentalTemperaturePatchSD15 = type("ExperimentalTemperaturePatch_SD15", (ExperimentalTemperaturePatch,), {"TOGGLES": layers_SD15})
class CLIPTemperaturePatch:
@classmethod
def INPUT_TYPES(cls):
return {"required": { "clip": ("CLIP",),
"Temperature": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/Standalone_temperature_patches"
def patch(self, clip, Temperature):
def custom_optimized_attention(device, mask=None, small_input=True):
return temperature_patcher(Temperature).attention_basic_with_temperature
def new_forward(self, x, mask=None, intermediate_output=None):
optimized_attention = custom_optimized_attention(x.device, mask=mask is not None, small_input=True)
if intermediate_output is not None:
if intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
intermediate = None
for i, l in enumerate(self.layers):
x = l(x, mask, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
m = clip.clone()
clip_encoder_instance = m.cond_stage_model.clip_l.transformer.text_model.encoder
clip_encoder_instance.forward = types.MethodType(new_forward, clip_encoder_instance)
if getattr(m.cond_stage_model, f"clip_g", None) is not None:
clip_encoder_instance_g = m.cond_stage_model.clip_g.transformer.text_model.encoder
clip_encoder_instance_g.forward = types.MethodType(new_forward, clip_encoder_instance_g)
return (m,)
class CLIPTemperaturePatchDual:
@classmethod
def INPUT_TYPES(cls):
return {"required": { "clip": ("CLIP",),
"Temperature": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"CLIP_Model": (["clip_g","clip_l","both"],),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/Standalone_temperature_patches"
def patch(self, clip, Temperature, CLIP_Model):
def custom_optimized_attention(device, mask=None, small_input=True):
return temperature_patcher(Temperature, "CLIP").attention_basic_with_temperature
def new_forward(self, x, mask=None, intermediate_output=None):
optimized_attention = custom_optimized_attention(x.device, mask=mask is not None, small_input=True)
if intermediate_output is not None:
if intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
intermediate = None
for i, l in enumerate(self.layers):
x = l(x, mask, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
m = clip.clone()
if CLIP_Model in ["clip_l","both"]:
clip_encoder_instance = m.cond_stage_model.clip_l.transformer.text_model.encoder
clip_encoder_instance.forward = types.MethodType(new_forward, clip_encoder_instance)
if CLIP_Model in ["clip_g","both"]:
if getattr(m.cond_stage_model, f"clip_g", None) is not None:
clip_encoder_instance_g = m.cond_stage_model.clip_g.transformer.text_model.encoder
clip_encoder_instance_g.forward = types.MethodType(new_forward, clip_encoder_instance_g)
return (m,)