-
Notifications
You must be signed in to change notification settings - Fork 162
/
evaluator.py
executable file
·646 lines (576 loc) · 27.1 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import collections
import inspect
import itertools
import json
import os
import random
import sys
import time
from collections import defaultdict
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
import torch.distributed as dist
from datasets import Image, Sequence
from loguru import logger as eval_logger
from tqdm import tqdm
import lmms_eval.api
import lmms_eval.api.metrics
import lmms_eval.api.registry
from lmms_eval.evaluator_utils import (
consolidate_group_results,
consolidate_results,
get_sample_size,
get_subtask_list,
get_task_list,
prepare_print_tasks,
print_writeout,
run_task_tests,
)
from lmms_eval.loggers.evaluation_tracker import EvaluationTracker
from lmms_eval.models import get_model
from lmms_eval.tasks import TaskManager, get_task_dict
from lmms_eval.utils import (
create_iterator,
get_datetime_str,
get_git_commit_hash,
handle_non_serializable,
hash_string,
make_table,
positional_deprecated,
run_task_tests,
simple_parse_args_string,
)
@positional_deprecated
def simple_evaluate(
model,
model_args: Optional[Union[str, dict]] = None,
tasks: Optional[List[Union[str, dict, object]]] = None,
num_fewshot: Optional[int] = None,
batch_size: Optional[Union[int, str]] = None,
max_batch_size: Optional[int] = None,
device: Optional[str] = None,
use_cache: Optional[str] = None,
cache_requests: bool = False,
rewrite_requests_cache: bool = False,
delete_requests_cache: bool = False,
limit: Optional[Union[int, float]] = None,
bootstrap_iters: int = 100000,
check_integrity: bool = False,
write_out: bool = False,
log_samples: bool = True,
evaluation_tracker: Optional[EvaluationTracker] = None,
system_instruction: Optional[str] = None,
apply_chat_template: bool = False,
fewshot_as_multiturn: bool = False,
gen_kwargs: Optional[str] = None,
task_manager: Optional[TaskManager] = None,
verbosity: str = "INFO",
predict_only: bool = False,
random_seed: int = 0,
numpy_random_seed: int = 1234,
torch_random_seed: int = 1234,
fewshot_random_seed: int = 1234,
datetime_str: str = get_datetime_str(),
cli_args=None,
):
"""Instantiate and evaluate a model on a list of tasks.
:param model: Union[str, LM]
Name of model or LM object, see lm_eval.models.get_model
:param model_args: Optional[str, dict]
String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
Ignored if `model` argument is a LM object.
:param tasks: list[Union[str, dict, Task]]
List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
:param num_fewshot: int
Number of examples in few-shot context
:param batch_size: int or str, optional
Batch size for model
:param max_batch_size: int, optional
Maximal batch size to try with automatic batch size detection
:param device: str, optional
PyTorch device (e.g. "cpu" or "cuda:0") for running models
:param use_cache: str, optional
A path to a sqlite db file for caching model responses. `None` if not caching.
:param cache_requests: bool, optional
Speed up evaluation by caching the building of dataset requests. `None` if not caching.
:param rewrite_requests_cache: bool, optional
Rewrites all of the request cache if set to `True`. `None` if not desired.
:param delete_requests_cache: bool, optional
Deletes all of the request cache if set to `True`. `None` if not desired.
:param limit: int or float, optional
Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
:param bootstrap_iters:
Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
:param check_integrity: bool
Whether to run the relevant part of the test suite for the tasks
:param write_out: bool
If True, write out an example document and model input for checking task integrity
:param log_samples: bool
If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
:param system_instruction: str
System instruction to be applied to the prompt
:param apply_chat_template: bool
If True, apply chat template to the prompt
:param fewshot_as_multiturn: bool
Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
:param gen_kwargs: str
String arguments for model generation
Ignored for all tasks with loglikelihood output_type
:param predict_only: bool
If true only model outputs will be generated and returned. Metrics will not be evaluated
:param random_seed: int
Random seed for python's random module. If set to None, the seed will not be set.
:param numpy_random_seed: int
Random seed for numpy. If set to None, the seed will not be set.
:param torch_random_seed: int
Random seed for torch. If set to None, the seed will not be set.
:param fewshot_random_seed: int
Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
:return
Dictionary of results
"""
seed_message = []
if random_seed is not None:
# See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
seed_message.append(f"Setting random seed to {random_seed}")
random.seed(random_seed)
if numpy_random_seed is not None:
seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
np.random.seed(numpy_random_seed)
if torch_random_seed is not None:
seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
torch.manual_seed(torch_random_seed)
if seed_message:
eval_logger.info(" | ".join(seed_message))
assert tasks != [], "No tasks specified, or no tasks found. Please verify the task names."
if gen_kwargs:
gen_kwargs = simple_parse_args_string(gen_kwargs)
eval_logger.warning(f"generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.")
if gen_kwargs == "":
gen_kwargs = None
if model_args is None:
model_args = ""
if task_manager is None:
task_manager = TaskManager(verbosity, model_name=model)
task_dict = get_task_dict(tasks, task_manager)
ModelClass = get_model(model)
lm = ModelClass.create_from_arg_string(
model_args,
{
"batch_size": batch_size,
"device": device,
},
)
# helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
# (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
def _adjust_config(task_dict):
adjusted_task_dict = {}
for task_name, task_obj in task_dict.items():
if isinstance(task_obj, dict):
adjusted_task_dict = {
**adjusted_task_dict,
**{task_name: _adjust_config(task_obj)},
}
else:
task_obj = task_dict[task_name]
if type(task_obj) == tuple:
group, task_obj = task_obj
if task_obj is None:
continue
lm.task_dict[task_name] = task_obj.dataset
if "generate_until" in task_obj.get_config("output_type"):
if gen_kwargs is not None:
task_obj.set_config(key="generation_kwargs", value=gen_kwargs, update=True)
if predict_only:
eval_logger.info(f"Processing {task_name} in output-only mode. Metrics will not be calculated!")
# we have to change the class properties post-hoc. This is pretty hacky.
task_obj.override_metric(metric_name="bypass")
# override tasks' fewshot values to the provided num_fewshot arg value
# except if tasks have it set to 0 manually in their configs--then we should never overwrite that
if num_fewshot is not None:
if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
eval_logger.info(f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored.")
else:
eval_logger.warning(f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}")
task_obj.set_config(key="num_fewshot", value=num_fewshot)
else:
# if num_fewshot not provided, and the task does not define a default one, default to 0
if (default_num_fewshot := task_obj.get_config("num_fewshot")) is None:
task_obj.set_config(key="num_fewshot", value=0)
# fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
task_obj.set_fewshot_seed(seed=fewshot_random_seed)
# eval_logger.info(f"Setting fewshot random generator seed to {fewshot_random_seed}")
adjusted_task_dict[task_name] = task_obj
return adjusted_task_dict
task_dict = _adjust_config(task_dict)
if check_integrity:
run_task_tests(task_list=tasks)
if evaluation_tracker is not None:
evaluation_tracker.general_config_tracker.log_experiment_args(
model_source=model,
model_args=model_args,
system_instruction=system_instruction,
chat_template=lm.chat_template if apply_chat_template else None,
fewshot_as_multiturn=fewshot_as_multiturn,
)
results = evaluate(
lm=lm,
task_dict=task_dict,
limit=limit,
cache_requests=cache_requests,
rewrite_requests_cache=rewrite_requests_cache,
bootstrap_iters=bootstrap_iters,
write_out=write_out,
log_samples=True if predict_only else log_samples,
system_instruction=system_instruction,
apply_chat_template=apply_chat_template,
fewshot_as_multiturn=fewshot_as_multiturn,
verbosity=verbosity,
cli_args=cli_args,
)
if hasattr(lm, "_model"):
del lm._model
torch.cuda.empty_cache()
if lm.rank == 0:
if isinstance(model, str):
model_name = model
elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
model_name = model.config._name_or_path
else:
model_name = type(model).__name__
# add info about the model and few shot config
results["config"] = {
"model": model_name,
"model_args": model_args,
}
# add more detailed model info if available TODO: add model info
# if isinstance(lm, lm_eval.models.huggingface.HFLM):
# results["config"].update(lm.get_model_info())
# add info about execution
results["config"].update(
{
"batch_size": batch_size,
"batch_sizes": (list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []),
"device": device,
"use_cache": use_cache,
"limit": limit,
"bootstrap_iters": bootstrap_iters,
"gen_kwargs": gen_kwargs,
"random_seed": random_seed,
"numpy_seed": numpy_random_seed,
"torch_seed": torch_random_seed,
"fewshot_seed": fewshot_random_seed,
}
)
results["git_hash"] = get_git_commit_hash()
results["date"] = datetime_str
# add_env_info(results) # additional environment info to results
# add_tokenizer_info(results, lm) # additional info about tokenizer
return results
else:
return None
decontaminate_suffix = "_decontaminate"
@positional_deprecated
def evaluate(
lm: "LM",
task_dict,
limit: Optional[int] = None,
cache_requests: bool = False,
rewrite_requests_cache: bool = False,
bootstrap_iters: Optional[int] = 100000,
write_out: bool = False,
log_samples: bool = True,
system_instruction: Optional[str] = None,
apply_chat_template: bool = False,
fewshot_as_multiturn: bool = False,
verbosity: str = "INFO",
cli_args=None,
):
"""Instantiate and evaluate a model on a list of tasks.
:param lm: obj
Language Model
:param task_dict: dict[str, Task]
Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
:param limit: int, optional
Limit the number of examples per task (only use this for testing)
:param bootstrap_iters:
Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
:param write_out: bool
If True, write out an example document and model input for checking task integrity
:param log_samples: bool
If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
:param system_instruction: str
System instruction to be applied to the prompt
:param apply_chat_template: bool
If True, apply chat template to the prompt
:param fewshot_as_multiturn: bool
Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
:return
Dictionary of results
"""
# stores the final result for each task, for each metric/filter pair.
results = collections.defaultdict(dict)
# Tracks each task's version.
versions = collections.defaultdict(dict)
# Tracks the YAML configs of all chosen tasks.
configs = collections.defaultdict(dict)
# logs info about each document evaluated.
samples = collections.defaultdict(list)
# tracks all Instances/requests a model must generate output on.
requests = collections.defaultdict(list)
# Aggregated task scores presented with groups
results_agg = collections.defaultdict(dict)
# Aggregated groups scores only
groups_agg = collections.defaultdict(dict)
# stores the amount to pad out reqs per req. type so that
# number of fwd passes per distributed rank is equal
padding_requests = collections.defaultdict(int)
# store the hierarchy to do proper ordering
task_hierarchy = collections.defaultdict(list)
# store the ordering of tasks and groups
task_order = collections.defaultdict(int)
task_group_alias = collections.defaultdict(dict)
# store num-fewshot value per task
num_fewshot = collections.defaultdict(int)
# get lists of group hierarchy and each type of request
eval_tasks = get_task_list(task_dict)
name_to_task = {}
if not log_samples:
if not all("bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys() for task_output in eval_tasks):
raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
for task_output in eval_tasks:
task: Task = task_output.task
task_name = task_output.task_name
task.args = cli_args
name_to_task[task_name] = task
if type(task) == tuple:
group_name, task = task
task_hierarchy[group_name].append(task_name)
versions[group_name] = "N/A"
else:
group_name = None
task_hierarchy[task_name] = []
if task is None:
continue
versions[task_name] = task.VERSION
configs[task_name] = dict(task.dump_config())
if "num_fewshot" in configs[task_name]:
n_shot = configs[task_name]["num_fewshot"]
else:
n_shot = 0
num_fewshot[task_name] = n_shot
if "task_alias" in configs[task_name]:
task_group_alias[task_name] = configs[task_name]["task_alias"]
if ("group_alias" in configs[task_name]) and (group_name not in task_group_alias) and (group_name is not None):
task_group_alias[group_name] = configs[task_name]["group_alias"]
limit = get_sample_size(task, limit)
task.build_all_requests(
limit=limit,
rank=lm.rank,
world_size=lm.world_size,
cache_requests=cache_requests, # later we will add them
rewrite_requests_cache=rewrite_requests_cache,
system_instruction=system_instruction,
apply_chat_template=apply_chat_template,
fewshot_as_multiturn=fewshot_as_multiturn,
chat_template=getattr(lm, "apply_chat_template") if apply_chat_template else None,
tokenizer_name=getattr(lm, "tokenizer_name", "") if apply_chat_template else "",
)
eval_logger.debug(f"Task: {task_output.task_name}; number of requests on this rank: {len(task._instances)}")
if write_out:
print_writeout(task)
# aggregate Instances by LM method requested to get output.
for instance in task.instances:
reqtype = instance.request_type
requests[reqtype].append(instance)
if lm.world_size > 1:
instances_rnk = torch.tensor(len(task._instances), device=lm.device)
gathered_item = lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
# "multiple_choice" task types dispatch (several) "loglikelihood" request types
reqtype = "loglikelihood" if task.OUTPUT_TYPE == "multiple_choice" else task.OUTPUT_TYPE
# compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
numpad = max(gathered_item) - gathered_item[lm.rank]
# todo: may not account for padding in cases like SquadV2 which has multiple req types
padding_requests[reqtype] += numpad
### Run LMM on inputs, get all outputs ###
# execute each type of request
for reqtype, reqs in requests.items():
eval_logger.info("Running {} requests".format(reqtype))
# create `K` copies of each request `req` based off `K = req.repeats`
cloned_reqs = []
for req in reqs:
cloned_reqs.extend([req] * req.repeats)
if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
for _ in range(padding_requests[reqtype]):
cloned_reqs.extend([req] * req.repeats)
# run requests through model
resps = getattr(lm, reqtype)(cloned_reqs) # Choiszt run generate until
# put responses from model into a list of length K for each request.
for x, req in zip(resps, cloned_reqs):
req.resps.append(x)
if lm.world_size > 1:
lm.accelerator.wait_for_everyone()
RANK = lm.rank
WORLD_SIZE = lm.world_size
### Postprocess outputs ###
# TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
for task_output in eval_tasks:
task = task_output.task
task.apply_filters()
### Collect values of metrics on all datapoints ###
# # unpack results and sort back in order and return control to Task
# TODO: make it possible to use a different metric per filter
# Pre-process task.instances to group by doc_id
instances_by_doc_id = collections.defaultdict(list)
for instance in task.instances:
instances_by_doc_id[instance.doc_id].append(instance)
# Sort instances within each group
for instances in instances_by_doc_id.values():
instances.sort(key=lambda x: x.idx)
# iterate over different filters used
for filter_key in task.instances[0].filtered_resps.keys():
doc_iterator = task.doc_iterator(rank=RANK, limit=limit, world_size=WORLD_SIZE)
doc_iterator_for_counting = itertools.islice(range(len(task.test_docs())), RANK, limit, WORLD_SIZE) if task.has_test_docs() else itertools.islice(range(len(task.validation_docs())), RANK, limit, WORLD_SIZE)
total_docs = sum(1 for _ in doc_iterator_for_counting)
pbar = tqdm(total=total_docs, desc=f"Postprocessing", disable=(RANK != 0))
for doc_id, doc in doc_iterator:
requests = instances_by_doc_id[doc_id]
metrics = task.process_results(doc, [req.filtered_resps[filter_key] for req in requests])
if log_samples:
target = task.doc_to_target(doc)
saved_doc = {}
for key, value in doc.items():
# If image is not in key
if "image" not in key:
# If audio is also not the value
if isinstance(value, dict) and "array" in value:
continue
else:
saved_doc[key] = value
filtered_arguments = []
for req in requests:
# check if req.args is a list of tuples, and each item in the list is a serializable object
for value in req.args:
if isinstance(value, (str, int, float, bool, list, dict, type(None))):
filtered_arguments.append(value)
# else:
# filtered_arguments.append(_handle_non_serializable(value))
example = {
"doc_id": doc_id,
"doc": saved_doc,
"target": target,
"arguments": filtered_arguments,
"resps": [req.resps for req in requests],
"filtered_resps": [req.filtered_resps[filter_key] for req in requests],
"doc_hash": hash_string(
json.dumps(
requests[0].doc,
indent=2,
default=handle_non_serializable,
ensure_ascii=False,
)
),
"prompt_hash": hash_string(requests[0].arguments[0]),
"target_hash": hash_string(str(target)),
}
example.update(metrics)
task_output.logged_samples.append(example)
for metric, value in metrics.items():
task_output.sample_metrics[(metric, filter_key)].append(value)
pbar.update(1)
pbar.close()
if WORLD_SIZE > 1:
# if multigpu, then gather data across all ranks to rank 0
# first gather logged samples across all ranks
for task_output in eval_tasks:
if log_samples:
# for task_name, task_samples in list(samples.items()):
full_samples = [None] * WORLD_SIZE if RANK == 0 else None
per_rank_samples = []
for sample in task_output.logged_samples:
per_rank_samples.append(sample)
torch.distributed.gather_object(
obj=per_rank_samples,
object_gather_list=full_samples,
dst=0,
)
if RANK == 0:
task_output.logged_samples = list(itertools.chain.from_iterable(full_samples))
# then collect metrics across all ranks
for metrics in task_output.sample_metrics:
metric_list = [None] * WORLD_SIZE if RANK == 0 else None
torch.distributed.gather_object(
obj=task_output.sample_metrics[metrics],
object_gather_list=metric_list,
dst=0,
)
if RANK == 0:
task_output.sample_metrics[metrics] = list(itertools.chain.from_iterable(metric_list))
dist.barrier() # Ensure all processes are synced before proceeding
if RANK == 0:
### Aggregate results over all datapoints ###
# aggregate results ; run bootstrap CIs
for task_output in eval_tasks:
task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
(
results,
samples,
configs,
versions,
num_fewshot,
higher_is_better,
) = consolidate_results(eval_tasks)
### Calculate group metrics ###
if bool(results):
results, versions, show_group_table, *_ = consolidate_group_results(results, versions, task_dict)
results_agg, group_agg = prepare_print_tasks(task_dict, results)
subtask_list = get_subtask_list(task_dict)
# collect all higher_is_better values for metrics
# in the group's subtasks.
# TODO: clean this up ; unify with the below metric_list loop?
_higher_is_better = {}
for group, task_list in subtask_list.items():
if len(task_list) != 0: # subtask list will list "task_name": [] for solo tasks
for task in task_list:
for m, h in higher_is_better[task].items():
if m not in _higher_is_better.keys():
_higher_is_better[m] = h
if m in _higher_is_better and _higher_is_better[m] is not None and _higher_is_better[m] != h:
eval_logger.warning(f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None.")
_higher_is_better[m] = None
higher_is_better[group] = _higher_is_better
results_dict = {
"results": dict(results_agg.items()),
**({"groups": dict(group_agg.items())} if (bool(group_agg) & show_group_table) else {}),
"group_subtasks": dict(reversed(subtask_list.items())),
"configs": dict(sorted(configs.items())),
"versions": dict(sorted(versions.items())),
"n-shot": dict(sorted(num_fewshot.items())),
"higher_is_better": dict(sorted(higher_is_better.items())),
"n-samples": {
task_output.task_name: {
"original": len(task_output.task.eval_docs),
"effective": min(
limit if limit else len(task_output.task.eval_docs),
len(task_output.task.eval_docs),
),
}
for task_output in eval_tasks
},
}
if log_samples:
results_dict["samples"] = dict(samples)
else:
results_dict = None
if hasattr(lm, "accelerator"):
lm.accelerator.wait_for_everyone()
return results_dict
def request_caching_arg_to_dict(cache_requests: str) -> dict:
request_caching_args = {
"cache_requests": cache_requests in {"true", "refresh"},
"rewrite_requests_cache": cache_requests == "refresh",
"delete_requests_cache": cache_requests == "delete",
}
return request_caching_args