-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
336 lines (275 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import argparse
parser = argparse.ArgumentParser(description='sp')
parser.add_argument('--basepath', type=str, default='')
parser.add_argument('--configpath', type=str, default="config.json")
parser.add_argument('--lr', type=float, default=3e-5)
parser.add_argument('--bs', type=int, default=4)
parser.add_argument("--exit_layer", type=str, default='2')
parser.add_argument('--gradient-accumulation-steps', type=int, default=8)
parser.add_argument('--tmpdir', type=str, default='0')
parser.add_argument('--outdir', type=str, default='0')
parser.add_argument('--cpdir', type=str, default='0')
parser.add_argument('--start', type=int, default=0)
args = parser.parse_args()
train_config = {
"lr": args.lr,
"bs": args.bs,
"gradient_accumulation_steps": args.gradient_accumulation_steps,
"datapath": f"{args.tmpdir}",
"is_warmup": True,
"num_epochs": 20,
"num_warmup_steps": 2000,
"total_steps": 800000,
"num_workers": 8,
"act": "No",
"residual": "true,norm",
"max_len": 2048,
# During training, truncating the training sequences means that the larger the setting, the more training data is used, and the better the effect, but it also consumes more VRAM.
"config_path": args.configpath,
"b1": 0.9,
"b2": 0.95,
"grad_clip": 0.5,
"save_freq": 2
}
import json
from safetensors import safe_open
import os
import torch
torch.backends.cuda.matmul.allow_tf32 = True
from accelerate import Accelerator
from accelerate.utils import set_seed
set_seed(0)
accelerator = Accelerator(mixed_precision='fp16',
gradient_accumulation_steps=train_config["gradient_accumulation_steps"])
from kangaroo.adapter import AdapterModel
from typing import Any, Dict, List
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
import numpy as np
from transformers import get_linear_schedule_with_warmup, AutoConfig, get_cosine_schedule_with_warmup
from torch.utils.tensorboard import SummaryWriter
if accelerator.is_main_process:
writer = SummaryWriter(os.path.join(args.cpdir, f"tensorboard"))
writer.add_text('config', json.dumps(train_config))
baseconfig = AutoConfig.from_pretrained(args.basepath)
head = torch.nn.Linear(baseconfig.hidden_size, baseconfig.vocab_size, bias=False)
try:
with open(os.path.join(args.basepath, "model.safetensors.index.json"), "r") as f:
index_json = json.loads(f.read())
head_path = index_json["weight_map"]["lm_head.weight"]
with safe_open(os.path.join(args.basepath, head_path),
framework="pt",
device="cpu") as f:
tensor_slice = f.get_slice("lm_head.weight")
vocab_size, hidden_dim = tensor_slice.get_shape()
tensor = tensor_slice[:, :hidden_dim].float()
except:
with open(os.path.join(args.basepath, "pytorch_model.bin.index.json"), "r") as f:
index_json = json.loads(f.read())
head_path = index_json["weight_map"]["lm_head.weight"]
weights = torch.load(os.path.join(args.basepath, head_path))
tensor = weights["lm_head.weight"].float()
head.weight.data = tensor
head.eval()
for param in head.parameters():
param.requires_grad = False
def list_files(path):
datapath = []
for root, directories, files in os.walk(path):
for file in files:
file_path = os.path.join(root, file)
datapath.append(file_path)
return datapath
class CustomDataset(Dataset):
def __init__(self, datapath, transform=None):
self.data = datapath
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, index):
data = torch.load(self.data[index])
new_data = {}
hidden_state = data['hidden_state'][:train_config["max_len"]][None, :]
input_ids = data['input_ids'][:train_config["max_len"]][None, :]
loss_mask = data["loss_mask"][:train_config["max_len"]][None, :]
exit_layer = args.exit_layer
hidden_state_layer = data["hidden_state_layer{}".format(exit_layer)][:train_config["max_len"]][None, :]
length = hidden_state.shape[1]
attention_mask = [1] * length
loss_mask = loss_mask[0].tolist()
loss_mask[-1] = 0
input_ids_target = input_ids[:, 1:]
zeropadding = torch.tensor([[0]])
input_ids_target = torch.cat((input_ids_target, zeropadding), dim=1)
target = hidden_state[:, 1:, :]
zeropadding = torch.zeros(1, 1, target.shape[2])
target = torch.cat((target, zeropadding), dim=1)
hidden_state_layer = hidden_state_layer[:, 1:, :]
zeropadding = torch.zeros(1, 1, target.shape[2])
hidden_state_layer = torch.cat((hidden_state_layer, zeropadding), dim=1)
loss_mask[-1] = 0
new_data["attention_mask"] = attention_mask
new_data["loss_mask"] = loss_mask
new_data["target"] = target
new_data["hidden_state_big"] = hidden_state
new_data["input_ids"] = input_ids_target
new_data["hidden_state_early"] = hidden_state_layer
if self.transform:
new_data = self.transform(new_data)
return new_data
class DataCollatorWithPadding:
def paddingtensor(self, intensors, N):
B, n, S = intensors.shape
padding_tensor = torch.zeros(B, N - n, S)
outtensors = torch.cat((intensors, padding_tensor), dim=1)
return outtensors
def paddingtensor2D(self, intensors, N):
B, n = intensors.shape
padding_tensor = torch.zeros(B, N - n, dtype=intensors.dtype)
outtensors = torch.cat((intensors, padding_tensor), dim=1)
return outtensors
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
max_length = max(item['hidden_state_big'].shape[1] for item in features)
batch_input_ids = torch.cat([self.paddingtensor2D(item['input_ids'], max_length) for item in features])
batch_hidden_states_early = torch.cat([self.paddingtensor(item['hidden_state_early'], max_length) for item in features])
batch_hidden_states = torch.cat([self.paddingtensor(item['hidden_state_big'], max_length) for item in features])
batch_target = torch.cat([self.paddingtensor(item['target'], max_length) for item in features])
batch_loss_mask = torch.tensor(
[item['loss_mask'] + [0] * (max_length - len(item['loss_mask'])) for item in features])
batch_attention_mask = torch.tensor(
[item['attention_mask'] + [0] * (max_length - len(item['attention_mask'])) for item in features])
# batch_loss_mask = torch.ones_like(batch_loss_mask)
# batch_attention_mask=torch.ones_like(batch_attention_mask)
batch = {
"input_ids": batch_input_ids,
"hidden_states": batch_hidden_states,
"hidden_states_early": batch_hidden_states_early,
"target": batch_target,
"attention_mask": batch_attention_mask,
"loss_mask": batch_loss_mask,
}
return batch
def top_accuracy(output, target, topk=(1,)):
# output.shape (bs, num_classes), target.shape (bs, )
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k)
return res
datapath = list_files(train_config["datapath"])
traindatapath = datapath[:int(len(datapath) * 0.95)]
testdatapath = datapath[int(len(datapath) * 0.95):]
# print('td',train_config["datapath"])
# print(datapath)
# exit()
traindataset = CustomDataset(traindatapath, transform=None)
testdataset = CustomDataset(testdatapath)
train_loader = DataLoader(traindataset, batch_size=train_config["bs"], shuffle=True,
collate_fn=DataCollatorWithPadding(), num_workers=train_config["num_workers"],
pin_memory=True)
test_loader = DataLoader(testdataset, batch_size=train_config["bs"], shuffle=False,
collate_fn=DataCollatorWithPadding(), num_workers=train_config["num_workers"], pin_memory=True)
if accelerator.is_main_process:
if not os.path.exists(args.cpdir):
os.makedirs(args.cpdir)
config = AutoConfig.from_pretrained(train_config["config_path"])
model = AdapterModel(config)
optimizer = optim.AdamW(model.parameters(), lr=train_config["lr"], betas=(train_config["b1"], train_config["b2"]))
num_epochs = train_config["num_epochs"]
num_warmup_steps = train_config["num_warmup_steps"]
total_steps = train_config["total_steps"]
is_warmup = train_config["is_warmup"]
if is_warmup:
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps,
num_training_steps=total_steps)
model, head, optimizer, train_loader, test_loader, scheduler = accelerator.prepare(
model, head, optimizer, train_loader, test_loader, scheduler
)
else:
model, head, optimizer, train_loader, test_loader = accelerator.prepare(
model, head, optimizer, train_loader, test_loader
)
if args.start > 0:
accelerator.load_state(f"{args.cpdir}/state_{args.start-1}/")
log_steps = 20
for epoch in range(args.start, args.start + 1):
print("start epoch: ", epoch)
top_3acc = [0 for _ in range(3)]
correct = 0
total = 0
epoch_loss = 0
num_batches = 0
model.train()
for batch_idx, data in enumerate(tqdm(train_loader)):
optimizer.zero_grad()
from torch.autograd import Variable
data["hidden_states_early"] = Variable(data["hidden_states_early"], requires_grad=True)
predict = model(inputs_embeds=data["hidden_states_early"], attention_mask=data["attention_mask"])
with torch.no_grad():
target_head = head(data["target"]) # predict the feature after the RMS-Norm
target_p = nn.Softmax(dim=2)(target_head)
target_p = target_p.detach()
out_head = head(predict)
prob_exit = F.softmax(out_head, dim = 2)
prob_last = F.softmax(target_head, dim = 2)
prob_acc = torch.min(prob_last, prob_exit).sum(dim = 2)
out_logp = nn.LogSoftmax(dim=2)(out_head)
loss_mask = data["loss_mask"][:, :, None]
plogp = target_p * out_logp
loss = -torch.sum(torch.sum(loss_mask * plogp, 2)) / loss_mask.sum()
prob_acc = torch.sum(data["loss_mask"] * prob_acc) / data["loss_mask"].sum()
if accelerator.is_main_process and batch_idx % log_steps == 0:
print(f"\nStep: {batch_idx}\tLR: {optimizer.optimizer.param_groups[0]['lr']}\tAccept: {prob_acc.item()}\tLoss: {loss.item()}\n")
accelerator.backward(loss)
accelerator.clip_grad_value_(model.parameters(), train_config["grad_clip"])
optimizer.step()
if loss != loss and accelerator.is_main_process:
print(f"nan, Epoch {epoch}, batch id {batch_idx}")
with open('nan.txt', 'w') as f:
f.write(f"nan, Epoch {epoch}, batch id {batch_idx}")
torch.save(data, 'nandata.ckpt')
exit()
if is_warmup:
scheduler.step()
with torch.no_grad():
_, predicted = torch.max(out_head, 2)
_, target = torch.max(target_head, 2)
ct = loss_mask.sum().item()
cc = ((predicted == target) * loss_mask.squeeze()).sum().item()
out_head = out_head.view(-1, target_head.shape[-1])[loss_mask.view(-1) == 1]
target = target.view(-1)[loss_mask.view(-1) == 1]
topkacc = top_accuracy(out_head, target, (1, 2, 3))
for top_i in range(len(topkacc)):
top_3acc[top_i] += topkacc[top_i]
total += ct
correct += cc
if accelerator.is_main_process and ct != 0:
writer.add_scalar(f"train/lr", optimizer.optimizer.param_groups[0]["lr"], batch_idx+len(train_loader)*epoch)
writer.add_scalar(f"train/loss", loss.item(), batch_idx+len(train_loader)*epoch)
writer.add_scalar(f"train/prob_accept", prob_acc.item(), batch_idx+len(train_loader)*epoch)
writer.add_scalar(f"train/accuracy", cc / ct, batch_idx+len(train_loader)*epoch)
for id, i in enumerate(top_3acc):
writer.add_scalar(f"Top_K/top_{id + 1}_acc", topkacc[id].item() / ct, batch_idx+len(train_loader)*epoch)
epoch_loss += loss.item()
num_batches += 1
correct, total = torch.tensor(correct).cuda(), torch.tensor(total).cuda()
correct, total = accelerator.gather_for_metrics((correct, total))
correct, total = correct.sum().item(), total.sum().item()
epoch_loss /= num_batches
top_3acc = accelerator.gather_for_metrics(top_3acc)
if accelerator.is_local_main_process:
for id, i in enumerate(top_3acc):
writer.add_scalar(f"epoch/top_{id + 1}_acc", i.sum().item() / total, batch_idx+len(train_loader)*epoch)
if accelerator.is_local_main_process:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, epoch_loss))
print('Train Accuracy: {:.2f}%'.format(100 * correct / total))
accelerator.save_state(output_dir=f"{args.cpdir}/state_{epoch}")