-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathquadtree.go
359 lines (305 loc) · 8.11 KB
/
quadtree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
package engo
import (
"sync"
)
var (
quadtreeNodePool *sync.Pool
nodeDataPool *sync.Pool
)
const minQuadtreeCellSize = 0.01
func init() {
quadtreeNodePool = &sync.Pool{
New: func() interface{} {
return new(quadtreeNode)
},
}
nodeDataPool = &sync.Pool{
New: func() interface{} {
return new(quadtreeNodeData)
},
}
}
func aabbOverlaps(a, b AABB) bool {
// a is left of b
if a.Max.X < b.Min.X {
return false
}
// a is right of b
if a.Min.X > b.Max.X {
return false
}
// a is above b
if a.Max.Y < b.Min.Y {
return false
}
// a is below b
if a.Min.Y > b.Max.Y {
return false
}
// The two overlap
return true
}
func aabbWidth(x AABB) float32 {
return x.Max.X - x.Min.X
}
func aabbHeight(x AABB) float32 {
return x.Max.Y - x.Min.Y
}
func aabbRect(x, y, width, height float32) AABB {
return AABB{
Min: Point{
X: x,
Y: y,
},
Max: Point{
X: x + width,
Y: y + height,
},
}
}
type quadtreeNodeData struct {
Value AABBer
AABB AABB
}
type quadtreeNode struct {
Bounds AABB
Level int
Objects []*quadtreeNodeData
hasNodes bool
Nodes [4]*quadtreeNode
Tree *Quadtree
}
// Quadtree implementation which can store AABBer values
type Quadtree struct {
MaxObjects int // Maximum objects a node can hold before splitting into 4 subnodes
MaxLevels int // Total max levels inside root Quadtree
root *quadtreeNode
usePool bool
Total int
}
func calcMaxLevel(width, height float32) int {
res := 0
for width > minQuadtreeCellSize && height > minQuadtreeCellSize {
res++
width, height = width/2, height/2
}
return res
}
// NewQuadtree creates a new quadtree for the given bounds.
// When setting usePool to true, the internal values will be taken from a sync.Pool which reduces the allocation overhead.
// maxObjects tells the tree how many objects should be stored within a level before the quadtree cell is split.
func NewQuadtree(bounds AABB, usePool bool, maxObjects int) *Quadtree {
qt := &Quadtree{MaxObjects: maxObjects, usePool: usePool}
qt.root = qt.newNode(bounds, 0)
qt.MaxLevels = calcMaxLevel(aabbWidth(bounds), aabbHeight(bounds))
return qt
}
// Destroy frees the nodes if the Quadtree uses the node pool
func (qt *Quadtree) Destroy() {
qt.freeQuadtreeNode(qt.root)
qt.root = nil
}
func (qt *Quadtree) newNode(bounds AABB, level int) (node *quadtreeNode) {
if qt.usePool {
node = quadtreeNodePool.Get().(*quadtreeNode)
} else {
node = new(quadtreeNode)
}
node.Tree = qt
node.Bounds = bounds
node.Level = level
return node
}
func (qt *Quadtree) newQuadtreeNodeData(item AABBer, r AABB) *quadtreeNodeData {
if qt.usePool {
d := nodeDataPool.Get().(*quadtreeNodeData)
d.AABB = r
d.Value = item
return d
}
return &quadtreeNodeData{item, r}
}
func (qt *Quadtree) freeQuadtreeNodeData(n *quadtreeNodeData) {
if !qt.usePool {
return
}
nodeDataPool.Put(n)
}
func (qt *Quadtree) freeQuadtreeNode(n *quadtreeNode) {
if !qt.usePool {
return
}
if n.hasNodes {
for i, child := range n.Nodes {
qt.freeQuadtreeNode(child)
n.Nodes[i] = nil
}
}
if n.Objects != nil {
for _, o := range n.Objects {
qt.freeQuadtreeNodeData(o)
}
}
n.Objects = nil
n.Tree = nil
n.hasNodes = false
quadtreeNodePool.Put(n)
}
// split - split the node into 4 subnodes
func (qt *quadtreeNode) split() {
if qt.hasNodes {
return
}
qt.hasNodes = true
nextLevel := qt.Level + 1
subWidth := aabbWidth(qt.Bounds) / 2
subHeight := aabbHeight(qt.Bounds) / 2
x := qt.Bounds.Min.X
y := qt.Bounds.Min.Y
//top right node (0)
qt.Nodes[0] = qt.Tree.newNode(aabbRect(x+subWidth, y, subWidth, subHeight), nextLevel)
//top left node (1)
qt.Nodes[1] = qt.Tree.newNode(aabbRect(x, y, subWidth, subHeight), nextLevel)
//bottom left node (2)
qt.Nodes[2] = qt.Tree.newNode(aabbRect(x, y+subHeight, subWidth, subHeight), nextLevel)
//bottom right node (3)
qt.Nodes[3] = qt.Tree.newNode(aabbRect(x+subWidth, y+subHeight, subWidth, subHeight), nextLevel)
}
func (qt *quadtreeNode) isEmpty() bool {
return len(qt.Objects) == 0 && !qt.hasNodes
}
func (qt *quadtreeNode) unsplit() {
for i := 0; i < 4; i++ {
if !qt.Nodes[i].isEmpty() {
return
}
}
for i := 0; i < 4; i++ {
qt.Tree.freeQuadtreeNode(qt.Nodes[i])
qt.Nodes[i] = nil
}
qt.hasNodes = false
}
// getIndex - Determine which quadrant the object belongs to (0-3)
func (qt *quadtreeNode) getIndex(pRect AABB) int {
horzMidpoint := qt.Bounds.Min.X + (aabbWidth(qt.Bounds) / 2)
vertMidpoint := qt.Bounds.Min.Y + (aabbHeight(qt.Bounds) / 2)
//pRect can completely fit within the top quadrants
topQuadrant := (pRect.Min.Y < vertMidpoint) && (pRect.Max.Y < vertMidpoint)
//pRect can completely fit within the bottom quadrants
bottomQuadrant := (pRect.Min.Y > vertMidpoint)
//pRect can completely fit within the left quadrants
if (pRect.Min.X < horzMidpoint) && (pRect.Max.X < horzMidpoint) {
if topQuadrant {
return 1
} else if bottomQuadrant {
return 2
}
} else if pRect.Min.X > horzMidpoint {
//pRect can completely fit within the right quadrants
if topQuadrant {
return 0
} else if bottomQuadrant {
return 3
}
}
return -1 // index of the subnode (0-3), or -1 if pRect cannot completely fit within a subnode and is part of the parent node
}
// Insert inserts the given item to the quadtree
func (qt *Quadtree) Insert(item AABBer) {
qt.Total++
pRect := item.AABB()
qt.root.Insert(qt.newQuadtreeNodeData(item, pRect))
}
func (qt *quadtreeNode) Insert(item *quadtreeNodeData) {
if qt.hasNodes {
index := qt.getIndex(item.AABB)
if index != -1 {
qt.Nodes[index].Insert(item)
return
}
}
// If we don't subnodes within the Quadtree
qt.Objects = append(qt.Objects, item)
// If total objects is greater than max objects and level is less than max levels
if (len(qt.Objects) > qt.Tree.MaxObjects) && (qt.Tree.MaxLevels <= 0 || qt.Level < qt.Tree.MaxLevels) {
// split if we don't already have subnodes
if !qt.hasNodes {
qt.split()
}
// Add all objects to there corresponding subNodes
for i := 0; i < len(qt.Objects); {
object := qt.Objects[i] // Get the object out of the slice
bounds := object.AABB
index := qt.getIndex(bounds)
if index != -1 {
qt.Objects = append(qt.Objects[:i], qt.Objects[i+1:]...) // Remove the object from the slice
qt.Nodes[index].Insert(object)
} else {
i++
}
}
}
}
func (qt *quadtreeNode) Remove(item AABBer, pRect AABB) {
if qt.hasNodes {
index := qt.getIndex(pRect)
if index != -1 {
qt.Nodes[index].Remove(item, pRect)
qt.unsplit()
return
}
}
for i := 0; i < len(qt.Objects); i++ {
if qt.Objects[i].Value == item {
qt.Tree.freeQuadtreeNodeData(qt.Objects[i])
qt.Objects = append(qt.Objects[:i], qt.Objects[i+1:]...) // Remove the object from the slice
return
}
}
}
// Remove removes the given item from the quadtree
func (qt *Quadtree) Remove(item AABBer) {
bounds := item.AABB()
qt.root.Remove(item, bounds)
}
// Retrieve returns all objects that could collide with the given bounding box
func (qt *quadtreeNode) Retrieve(pRect AABB) []AABBer {
index := qt.getIndex(pRect)
// Array with all detected objects
result := make([]AABBer, len(qt.Objects))
for i, o := range qt.Objects {
result[i] = o.Value
}
//if we have subnodes ...
if qt.hasNodes {
//if pRect fits into a subnode ..
if index != -1 {
result = append(result, qt.Nodes[index].Retrieve(pRect)...)
} else {
//if pRect does not fit into a subnode, check it against all subnodes
for i := 0; i < 4; i++ {
result = append(result, qt.Nodes[i].Retrieve(pRect)...)
}
}
}
return result
}
// Retrieve returns all objects that could collide with the given bounding box and passing the given filter function.
func (qt *Quadtree) Retrieve(find AABB, filter func(aabb AABBer) bool) []AABBer {
var foundIntersections []AABBer
potentials := qt.root.Retrieve(find)
for _, p := range potentials {
if aabbOverlaps(find, p.AABB()) && (filter == nil || filter(p)) {
foundIntersections = append(foundIntersections, p)
}
}
return foundIntersections
}
//Clear removes all items from the quadtree
func (qt *Quadtree) Clear() {
bounds := qt.root.Bounds
qt.freeQuadtreeNode(qt.root)
qt.root = qt.newNode(bounds, 0)
qt.Total = 0
}