-
Notifications
You must be signed in to change notification settings - Fork 0
/
license_plate_recognition.py
193 lines (157 loc) · 6.44 KB
/
license_plate_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from matplotlib import pyplot as plt
import cv2
import numpy as np
from keras.layers import Flatten, Dense, Conv2D, MaxPooling2D, Input, Dropout
from keras.models import Model, Sequential
CHAR_RECOGNITION_YOLO_MODEL_PATH = "D:/ANPR/ANPR-ML/checkpoints/checkpoints/my_checkpoint"
# Match contours to license plate or character template
def find_contours(dimensions, img):
# cv2.imshow("before img", img)
# cv2.waitKey(0)
# Find all contours in the image
cntrs, _ = cv2.findContours(img.copy(), cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
# Draw all contours
# -1 signifies drawing all contours
# cv2.drawContours(img, cntrs, -1, (0, 255, 0), 2)
# cv2.imshow("img", img)
# cv2.waitKey(0)
# Retrieve potential dimensions
lower_width = dimensions[0]
upper_width = dimensions[1]
lower_height = dimensions[2]
upper_height = dimensions[3]
# Check largest 5 or 15 contours for license plate or character respectively
cntrs = sorted(cntrs, key=cv2.contourArea, reverse=True)[:15]
ii = cv2.imread('contour.jpg')
x_cntr_list = []
target_contours = []
img_res = []
# print(dimensions)
for cntr in cntrs:
# detects contour in binary image and returns the coordinates of rectangle enclosing it
intX, intY, intWidth, intHeight = cv2.boundingRect(cntr)
# print(cv2.boundingRect(cntr))
# checking the dimensions of the contour to filter out the characters by contour's size
if intWidth > lower_width and intWidth < upper_width and intHeight > lower_height and intHeight < upper_height:
x_cntr_list.append(
intX
) #stores the x coordinate of the character's contour, to used later for indexing the contours
char_copy = np.zeros((44, 24))
# extracting each character using the enclosing rectangle's coordinates.
char = img[intY:intY + intHeight, intX:intX + intWidth]
char = cv2.resize(char, (20, 40))
cv2.rectangle(ii, (intX, intY),
(intWidth + intX, intY + intHeight), (50, 21, 200),
2)
plt.imshow(ii, cmap='gray')
plt.title('Predict Segments')
# Make result formatted for classification: invert colors
char = cv2.subtract(255, char)
# Resize the image to 24x44 with black border
char_copy[2:42, 2:22] = char
char_copy[0:2, :] = 0
char_copy[:, 0:2] = 0
char_copy[42:44, :] = 0
char_copy[:, 22:24] = 0
img_res.append(
char_copy
) # List that stores the character's binary image (unsorted)
# Return characters on ascending order with respect to the x-coordinate (most-left character first)
# plt.show()
# arbitrary function that stores sorted list of character indeces
indices = sorted(range(len(x_cntr_list)), key=lambda k: x_cntr_list[k])
img_res_copy = []
for idx in indices:
img_res_copy.append(
img_res[idx]) # stores character images according to their index
img_res = np.array(img_res_copy)
return img_res
# Find characters in the resulting images
def segment_characters(image):
# Preprocess cropped license plate image
img_lp = cv2.resize(image, (333, 75))
img_gray_lp = cv2.cvtColor(img_lp, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(img_gray_lp, (7, 7), 0)
img_binary_lp = cv2.adaptiveThreshold(img_gray_lp, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 51, 10)
# apply morphology
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
morph = cv2.morphologyEx(img_binary_lp, cv2.MORPH_OPEN, kernel)
img_binary_lp = cv2.erode(img_binary_lp, (3, 3))
img_binary_lp = cv2.dilate(img_binary_lp, (3, 3))
LP_WIDTH = img_binary_lp.shape[0]
LP_HEIGHT = img_binary_lp.shape[1]
# Make borders white
img_binary_lp[0:3, :] = 255
img_binary_lp[:, 0:3] = 255
img_binary_lp[72:75, :] = 255
img_binary_lp[:, 330:333] = 255
# Estimations of character contours sizes of cropped license plates
dimensions = [
LP_WIDTH / 6, LP_WIDTH / 2, LP_HEIGHT / 10, 2 * LP_HEIGHT / 3
]
# plt.imshow(img_binary_lp, cmap='gray')
# plt.title('Contour')
# plt.show()
cv2.imwrite('contour.jpg', img_binary_lp)
# Get contours within cropped license plate
char_list = find_contours(dimensions, img_binary_lp)
return char_list
def load_char_recog_model():
# Create a new model instance
loaded_model = Sequential()
loaded_model.add(
Conv2D(16, (22, 22),
input_shape=(28, 28, 3),
activation='relu',
padding='same'))
loaded_model.add(
Conv2D(32, (16, 16),
input_shape=(28, 28, 3),
activation='relu',
padding='same'))
loaded_model.add(
Conv2D(64, (8, 8),
input_shape=(28, 28, 3),
activation='relu',
padding='same'))
loaded_model.add(
Conv2D(64, (4, 4),
input_shape=(28, 28, 3),
activation='relu',
padding='same'))
loaded_model.add(MaxPooling2D(pool_size=(4, 4)))
loaded_model.add(Dropout(0.4))
loaded_model.add(Flatten())
loaded_model.add(Dense(128, activation='relu'))
loaded_model.add(Dense(36, activation='softmax'))
# Restore the weights
loaded_model.load_weights(
CHAR_RECOGNITION_YOLO_MODEL_PATH
).expect_partial()
return loaded_model
# Predicting the output
def fix_dimension(img):
new_img = np.zeros((28, 28, 3))
for i in range(3):
new_img[:, :, i] = img
return new_img
def show_results(model,char):
dic = {}
characters = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
for i, c in enumerate(characters):
dic[i] = c
loaded_model = model
output = []
for i, ch in enumerate(char): #iterating over the characters
img_ = cv2.resize(ch, (28, 28), interpolation=cv2.INTER_AREA)
img = fix_dimension(img_)
img = img.reshape(1, 28, 28, 3) #preparing image for the model
predict_x = loaded_model.predict(img)
y_ = np.argmax(predict_x, axis=1)[0]
character = dic[y_]
output.append(character) #storing the result in a list
plate_number = ''.join(output)
return plate_number