forked from VLOGroup/mri-variationalnetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_mri_vn.py
316 lines (260 loc) · 14.6 KB
/
train_mri_vn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import time
import os
import vn
import tensorflow as tf
import argparse
from mridata import VnMriReconstructionData, VnMriFilenameProducer
import icg
import optotf
class VnMriReconstructionCell(icg.VnBasicCell):
def mriForwardOpWithOS(self, u, coil_sens, sampling_mask):
with tf.compat.v1.variable_scope('mriForwardOp'):
# add frequency encoding oversampling
pad_u = tf.cast(tf.multiply(tf.cast(tf.shape(sampling_mask)[1], tf.float32), 0.25) + 1, tf.int32)
pad_l = tf.cast(tf.multiply(tf.cast(tf.shape(sampling_mask)[1], tf.float32), 0.25) - 1, tf.int32)
u_pad = tf.pad(u, [[0, 0], [pad_u, pad_l], [0, 0]])
u_pad = tf.expand_dims(u_pad, axis=1)
# apply sensitivites
coil_imgs = u_pad * coil_sens
# centered Fourier transform
Fu = icg.fftc2d(coil_imgs)
# apply sampling mask
mask = tf.expand_dims(sampling_mask, axis=1)
kspace = tf.complex(tf.math.real(Fu) * mask, tf.math.imag(Fu) * mask)
return kspace
def mriAdjointOpWithOS(self, f, coil_sens, sampling_mask):
with tf.compat.v1.variable_scope('mriAdjointOp'):
# variables to remove frequency encoding oversampling
pad_u = tf.cast(tf.multiply(tf.cast(tf.shape(sampling_mask)[1], tf.float32), 0.25) + 1, tf.int32)
pad_l = tf.cast(tf.multiply(tf.cast(tf.shape(sampling_mask)[1], tf.float32), 0.25) - 1, tf.int32)
# apply mask and perform inverse centered Fourier transform
mask = tf.expand_dims(sampling_mask, axis=1)
Finv = icg.ifftc2d(tf.complex(tf.math.real(f) * mask, tf.math.imag(f) * mask))
# multiply coil images with sensitivities and sum up over channels
img = tf.reduce_sum(Finv * tf.math.conj(coil_sens), 1)[:, pad_u:-pad_l, :]
return img
def mriForwardOp(self, u, coil_sens, sampling_mask):
with tf.compat.v1.variable_scope('mriForwardOp'):
# apply sensitivites
coil_imgs = tf.expand_dims(u, axis=1) * coil_sens
# centered Fourier transform
Fu = icg.fftc2d(coil_imgs)
# apply sampling mask
mask = tf.expand_dims(sampling_mask, axis=1)
kspace = tf.complex(tf.math.real(Fu) * mask, tf.math.imag(Fu) * mask)
return kspace
def mriAdjointOp(self, f, coil_sens, sampling_mask):
with tf.compat.v1.variable_scope('mriAdjointOp'):
# apply mask and perform inverse centered Fourier transform
mask = tf.expand_dims(sampling_mask, axis=1)
Finv = icg.ifftc2d(tf.complex(tf.math.real(f) * mask, tf.math.imag(f) * mask))
# multiply coil images with sensitivities and sum up over channels
img = tf.reduce_sum(Finv * tf.math.conj(coil_sens), 1)
return img
def call(self, t, inputs):
# get the variables
u_t_1 = inputs[0][t]
# extract constants
f = self._constants['f']
c = self._constants['coil_sens']
m = self._constants['sampling_mask']
# get the parameters
param_idx = self.time_to_param_index(t)
# datatermweight
lambdaa = self._params['lambda'][param_idx]
# activation function weights
w = self._params['w1'][param_idx]
# convolution kernels
k = self._params['k1'][param_idx]
# extract options
vmin = self._options['vmin']
vmax = self._options['vmax']
pad = self._options['pad']
# split kernels
k_real = tf.math.real(k)
k_imag = tf.math.imag(k)
# define the cell
# pad the image to avoid problems at the border
u_p = tf.pad(tf.expand_dims(u_t_1,-1), [[0, 0], [pad, pad], [pad, pad], [0, 0]], 'SYMMETRIC')
# split the image in real and imaginary part and perform convolution
u_k_real = tf.nn.conv2d(tf.math.real(u_p), k_real, [1, 1, 1, 1], 'SAME')
u_k_imag = tf.nn.conv2d(tf.math.imag(u_p), k_imag, [1, 1, 1, 1], 'SAME')
# add up the convolution results
u_k = u_k_real + u_k_imag
# apply the activation functions
shape = tf.shape(u_k)
u_k = tf.transpose(tf.reshape(u_k, (-1, tf.shape(u_k)[-1])), [1, 0])
u_k = tf.reshape(u_k, (tf.shape(u_k)[0], -1))
f_u_k = optotf.activations._get_operator('rbf')(u_k, w, vmin=vmin, vmax=vmax)
f_u_k = tf.reshape(tf.transpose(tf.reshape(f_u_k, tf.shape(u_k)), [1, 0]), shape)
# perform transpose convolution for real and imaginary part
u_k_T_real = tf.nn.conv2d_transpose(f_u_k, tf.math.real(k), tf.shape(u_p), [1, 1, 1, 1], 'SAME')
u_k_T_imag = tf.nn.conv2d_transpose(f_u_k, tf.math.imag(k), tf.shape(u_p), [1, 1, 1, 1], 'SAME')
# rebuild complex image
u_k_T = tf.complex(u_k_T_real, u_k_T_imag)
# remove padding
Ru = u_k_T[:, pad:-pad, pad:-pad, 0]
# normalize regularizer by number of filters
Ru /= self._options['num_filter']
# define dataterm operators according to sampling pattern
if self._options['sampling_pattern'] == 'cartesian':
print('mri op')
forwardOp = self.mriForwardOp
adjointOp = self.mriAdjointOp
elif not 'sampling_pattern' in self._options or self._options['sampling_pattern'] == 'cartesian_with_os':
print('mri op with OS')
forwardOp = self.mriForwardOpWithOS
adjointOp = self.mriAdjointOpWithOS
else:
raise ValueError("Selected sampling pattern '%s' does not exist!" % (self._options['sampling_pattern']))
# build dataterm
Au = forwardOp(u_t_1, c, m)
At_Au_f = adjointOp(Au - f, c, m)
Du = tf.complex(tf.math.real(At_Au_f)*lambdaa, tf.math.imag(At_Au_f)*lambdaa)
# gradient step
u_t = u_t_1 - Ru - Du
return [u_t]
if __name__ == '__main__':
# Add arguments
parser = argparse.ArgumentParser()
parser.add_argument('--training_config', type=str, default='./configs/training.yaml')
parser.add_argument('--network_config', type=str, default='./configs/mri_vn.yaml')
parser.add_argument('--data_config', type=str, default='./configs/data.yaml')
parser.add_argument('--global_config', type=str, default='./configs/global.yaml')
args = parser.parse_args()
# Load the configs
network_config, reg_config = icg.utils.loadYaml(args.network_config, ['network', 'reg'])
checkpoint_config, optimizer_config = icg.utils.loadYaml(args.training_config, ['checkpoint_config', 'optimizer_config'])
data_config = icg.utils.loadYaml(args.data_config, ['data_config'])
global_config = icg.utils.loadYaml(args.global_config, ['global_config'])
# Tensorflow config
tf_config = tf.compat.v1.ConfigProto(log_device_placement=False)
tf_config.gpu_options.allow_growth = global_config['tf_allow_gpu_growth']
# define the output locations
base_name = os.path.basename(args.network_config).split('.')[0]
suffix = base_name + '_' + time.strftime('%Y-%m-%d--%H-%M-%S')
vn.setupLogDirs(suffix, args, checkpoint_config)
# load data
filename_producer = VnMriFilenameProducer(data_config)
data = VnMriReconstructionData(data_config, filename_dequeue_op=filename_producer.dequeue_op, queue_capacity=global_config['data_queue_capacity'])
network_config['sampling_pattern'] = data_config['sampling_pattern']
# Create a queue runner that will run 4 threads in parallel to enqueue examples.
qr_data = tf.train.QueueRunner(data.queue, [data.enqueue_op] * global_config['data_num_threads'])
# Create a queue runner to produce the filenames
qr_filenames = tf.train.QueueRunner(filename_producer.queue, [filename_producer.enqueue_op])
# Create a coordinator, launch the queue runner threads.
coord = tf.train.Coordinator()
# define parameters
params = icg.utils.Params()
const_params = icg.utils.ConstParams()
vn.paramdefinitions.add_convolution_params(params, const_params, reg_config['filter1'])
vn.paramdefinitions.add_activation_function_params(params, reg_config['activation1'])
vn.paramdefinitions.add_dataterm_weights(params, network_config)
# setup the network
vn_cell = VnMriReconstructionCell(params=params.get(),
const_params=const_params.get(),
inputs=[data.u],
constants=data.constants,
options=network_config)
mrirecon_vn = icg.VariationalNetwork(cell=vn_cell,
num_stages=network_config['num_stages'],
parallel_iterations=global_config['parallel_iterations'],
swap_memory=global_config['swap_memory'])
# get all images
u_all = mrirecon_vn.get_outputs(stage_outputs=True)[0]
u_T = tf.identity(u_all[-1], 'u_T')
# define loss
with tf.compat.v1.variable_scope('loss'):
# mse abs-smoothed
target_abs = tf.sqrt(tf.math.real((data.target) * tf.math.conj(data.target)) + 1e-12)
output_abs = tf.sqrt(tf.math.real((u_T) * tf.math.conj(u_T)) + 1e-12)
energy = tf.reduce_mean(tf.reduce_sum(((output_abs - target_abs) ** 2), axis=(1, 2)))
# rmse
denominator = tf.reduce_sum(tf.math.real((data.target) * tf.math.conj(data.target)), axis=(1, 2))
nominator = tf.reduce_sum(tf.math.real((u_T - data.target) * tf.math.conj(u_T - data.target)), axis=(1, 2))
rmse = tf.reduce_mean(tf.sqrt(nominator / denominator))
# ssim
output_abs = tf.expand_dims(tf.abs(u_T), -1)
target_abs = tf.expand_dims(tf.abs(data.target), -1)
L = tf.reduce_max(target_abs, axis=(1, 2, 3), keepdims=True) - tf.reduce_min(target_abs, axis=(1, 2, 3),
keepdims=True)
ssim = vn.utils.ssim(output_abs, target_abs, L=L)
# add images and energy to summary
with tf.compat.v1.variable_scope('loss_summary'):
tf.compat.v1.summary.scalar('energy', energy)
tf.compat.v1.summary.scalar('rmse', rmse)
tf.compat.v1.summary.scalar('ssim', ssim)
# add images to tensorboard
tf.compat.v1.summary.image('input', tf.abs(tf.expand_dims(data.u, -1)), max_outputs=10)
for i in range(network_config['num_stages']):
tf.compat.v1.summary.image('u%d' % (i + 1), tf.abs(tf.expand_dims(u_all[i + 1], -1)), max_outputs=10)
tf.compat.v1.summary.image('target', tf.abs(tf.expand_dims(data.target, -1)), max_outputs=10)
# define the optimizer
optimizer = icg.optimizer.IPALMOptimizer(params, energy, optimizer_config)
with tf.compat.v1.Session(config=tf_config) as sess:
# initialize the variables
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
# memorize a few ops and placeholders to be used in evaluation
energy_op = tf.compat.v1.add_to_collection('energy_op', energy)
ssim_op = tf.compat.v1.add_to_collection('ssim_op', ssim)
rmse_op = tf.compat.v1.add_to_collection('rmse_op', rmse)
u_op = tf.compat.v1.add_to_collection('u_op', u_all[-1])
u_all_op = tf.compat.v1.add_to_collection('u_all_op', u_all)
u_var = tf.compat.v1.add_to_collection('u_var', data.u)
g_var = tf.compat.v1.add_to_collection('g_var', data.target)
c_var = tf.compat.v1.add_to_collection('c_var', data.constants['coil_sens'])
m_var = tf.compat.v1.add_to_collection('m_var', data.constants['sampling_mask'])
f_var = tf.compat.v1.add_to_collection('f_var', data.constants['f'])
g_var = tf.compat.v1.add_to_collection('g_var', data.target)
# load from checkpoint if required
saver = tf.compat.v1.train.Saver(max_to_keep=0)
# initialize enqueuing threads
enqueue_threads_filename_producer = qr_filenames.create_threads(sess, coord=coord, start=True)
enqueue_threads_data = qr_data.create_threads(sess, coord=coord, start=True)
# collect the summaries
epoch_summaries = tf.compat.v1.summary.merge_all()
image_summaries = tf.compat.v1.summary.merge_all(key='images')
train_writer = tf.compat.v1.summary.FileWriter(checkpoint_config['log_dir'] + '/' + suffix + '/train/', sess.graph)
run_options = tf.compat.v1.RunOptions(trace_level=tf.compat.v1.RunOptions.FULL_TRACE)
run_metadata = tf.compat.v1.RunMetadata()
iter_per_epoch = filename_producer.iter_per_epoch
try:
start_time = time.time()
for epoch in range(0, optimizer_config['max_iter'] + 1):
if coord.should_stop():
break
# get next mini batch
feed_dict = data.get_feed_dict(sess=sess)
# run a single iteration
optimizer.minimize(sess, epoch, feed_dict)
feed_dict = data.get_eval_feed_dict()
if (epoch % checkpoint_config['summary_modulo'] == 0) or epoch == optimizer_config['max_iter']:
summary = sess.run(epoch_summaries,
feed_dict=feed_dict,
options=run_options, run_metadata=run_metadata)
train_writer.add_run_metadata(run_metadata, 'step%d' % epoch)
train_writer.add_summary(summary, epoch)
if (epoch % checkpoint_config['save_modulo'] == 0) or epoch == optimizer_config['max_iter']:
# update summary
summary = sess.run(image_summaries,
feed_dict=feed_dict,
options=run_options, run_metadata=run_metadata)
train_writer.add_run_metadata(run_metadata, 'images%d' % epoch)
train_writer.add_summary(summary, epoch)
# save variables to checkpoint
saver.save(sess, checkpoint_config['log_dir'] + '/' + suffix + '/checkpoints/' + 'checkpoint', global_step=epoch)
# compute the current energy
e_i = sess.run(energy, feed_dict=feed_dict)
print("epoch:", epoch, "energy =", e_i)
print('Elapsed training time:', time.time() - start_time)
except Exception as e:
# Report exceptions to the coordinator.
coord.request_stop(e)
except KeyboardInterrupt as e:
print('[KEYBOARD INTERRUPT]: Stop training.')
finally:
# Terminate as usual. It is innocuous to request stop twice.
coord.request_stop()
coord.join(enqueue_threads_data)
coord.join(enqueue_threads_filename_producer)