-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_FL&BL.py
363 lines (318 loc) · 17.9 KB
/
main_FL&BL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import time
import matplotlib
import sys
matplotlib.use('Agg')
import os
import copy
import numpy as np
from torchvision import datasets, transforms
from tqdm import tqdm
import torch
from tensorboardX import SummaryWriter
from scipy import optimize
import random
import cmath
from Calculate import get_2_norm, get_2_diff, calculate_grads, avg_grads
from sampling import mnist_iid, mnist_noniid, cifar_iid, cifar_noniid, FashionMNIST_noniid
from options import args_parser
from Update import LocalUpdate
from FedNets import MLP1, CNNMnist, CNN_test
from averaging import average_weights
from Privacy import Privacy_account, Adjust_T
from Noise_add import noise_add, users_sampling, clipping
if __name__ == '__main__':
args = args_parser()
# define paths
path_project = os.path.abspath('..')
summary = SummaryWriter('local')
### computation allocation ###
args.local_frequence = 1 ### alpha
args.bc_difficulty = 200 ### beta * N
#args.cauchy=0.1
#args.T=3
args.gpu = -1 # -1 (CPU only) or GPU = 0
args.lr = 0.01 # 0.001 for cifar dataset
args.model = 'mlp' # 'mlp' or 'cnn'
args.dataset = 'mnist' # 'mnist'
args.num_users = 20 ### numb of users ###
# args.num_Chosenusers = 30
args.num_items_train = 512 # numb of local data size #
args.num_items_test = 256
args.local_bs = 64 ### Local Batch size (1200 = full dataset ###
### size of a user for mnist, 2000 for cifar) ###
args.total_time = 100
args.bl_antifrequence = int(args.bc_difficulty / args.num_users)
args.T_max = int(args.total_time // (args.local_frequence + args.bl_antifrequence ))
args.set_epoch = range(1, args.T_max + 1)
print(args.set_epoch)
args.set_num_Chosenusers = [args.num_users]
args.set_lazy = int(args.num_users * 0) ### no lazy
args.num_experiments = 20
args.clipthr = 10
noise_scale = 0
args.iid = False
args.degree_noniid=1
# load dataset and split users
dict_users = {}
dict_users_test = {}
dataset_train = []
dataset_test = []
dict_users_train = {}
dataset_train = datasets.MNIST('./data/mnist/', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
dataset_test = datasets.MNIST('./data/mnist/', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
# sample users
if args.iid:
dict_users = mnist_iid(args, dataset_train, args.num_users, args.num_items_train)
dict_sever = mnist_iid(args, dataset_test, args.num_users, args.num_items_test)
else:
dict_users = mnist_noniid(args, dataset_train, args.num_users, args.num_items_train)
dict_sever = mnist_noniid(args, dataset_test, args.num_users, args.num_items_test)
img_size = dataset_train[0][0].shape
final_train_loss = [[0 for i in range(len(args.set_epoch))] for j in range(len(args.set_num_Chosenusers))]
final_train_accuracy = [[0 for i in range(len(args.set_epoch))] for j in range(len(args.set_num_Chosenusers))]
final_test_loss = [[0 for i in range(len(args.set_epoch))] for j in range(len(args.set_num_Chosenusers))]
final_test_accuracy = [[0 for i in range(len(args.set_epoch))] for j in range(len(args.set_num_Chosenusers))]
final_Lipschitz_chixi = [[0 for i in range(len(args.set_epoch))] for j in range(len(args.set_num_Chosenusers))]
final_smooth_L = [[0 for i in range(len(args.set_epoch))] for j in range(len(args.set_num_Chosenusers))]
final_gap_delta = [[0 for i in range(len(args.set_epoch))] for j in range(len(args.set_num_Chosenusers))]
final_lazy_theta = [[0 for i in range(len(args.set_epoch))] for j in range(len(args.set_num_Chosenusers))]
for s in range(len(args.set_num_Chosenusers)):
for j in range(len(args.set_epoch)):
args.num_Chosenusers = copy.deepcopy(args.set_num_Chosenusers[s])
args.epochs = copy.deepcopy(args.set_epoch[j]) # numb of global iters
args.tau = args.local_frequence * (args.total_time - args.bl_antifrequence * args.epochs)
args.tau_avg = args.tau // args.epochs
args.local_ep = int(args.tau_avg) # numb of local iters
print("dataset:", args.dataset, " num_users:", args.num_users, " num_chosen_users:", args.num_Chosenusers, " epochs:", args.epochs,\
"local_ep:", args.local_ep, "local train size", args.num_items_train, "batch size:", args.local_bs)
loss_test, loss_train = [], []
acc_test, acc_train = [], []
smooth_L, Lipschitz_chixi, gap_delta, lazy_theta = [], [], [], []
for m in range(args.num_experiments):
# build model
net_glob = None
if args.model == 'cnn' and args.dataset == 'mnist':
if args.gpu != -1:
torch.cuda.set_device(args.gpu)
net_glob = CNN_test(args=args).cuda()
else:
net_glob = CNNMnist(args=args)
elif args.model == 'mlp':
len_in = 1
for x in img_size:
len_in *= x
if args.gpu != -1:
torch.cuda.set_device(args.gpu)
net_glob = MLP1(dim_in=len_in, dim_hidden=32, dim_out=args.num_classes).cuda()
else:
net_glob = MLP1(dim_in=len_in, dim_hidden=32, dim_out=args.num_classes)
else:
exit('Error: unrecognized model')
print("Nerual Net:",net_glob)
net_glob.train() #Train() does not change the weight values
# copy weights
w_glob = net_glob.state_dict()
w_size = 0
w_size_all = 0
for k in w_glob.keys():
size = w_glob[k].size()
if(len(size)==1):
nelements = size[0]
else:
nelements = size[0] * size[1]
w_size += nelements*4
w_size_all += nelements
# print("Size ", k, ": ",nelements*4)
print("Weight Size:", w_size, " bytes")
print("Weight & Grad Size:", w_size*2, " bytes")
print("Each user Training size:", 784* 8/8* args.local_bs, " bytes")
print("Total Training size:", 784 * 8 / 8 * 60000, " bytes")
# training
threshold_epochs = copy.deepcopy(args.epochs)
threshold_epochs_list, noise_list = [], []
loss_avg_list, acc_avg_list, list_loss, loss_avg = [], [], [], []
eps_tot_list, eps_tot = [], 0
### FedAvg Aglorithm ###
### Compute noise scale ###
for iter in range(args.epochs):
print('\n','*' * 20,f'Epoch: {iter}','*' * 20)
if args.num_Chosenusers < args.num_users:
chosenUsers = random.sample(range(1,args.num_users),args.num_Chosenusers)
chosenUsers.sort()
else:
chosenUsers = range(args.num_users)
print("\nChosen users:", chosenUsers)
w_locals, w_locals_1ep, loss_locals, acc_locals, w_locals_2ep = [], [], [], [], []
w_difference, difference_loss = [], []
w_lazy_diff_list = []
w_glob_pre = w_glob
### local train ###
for idx in range(len(chosenUsers)):
if idx < (len(chosenUsers) - args.set_lazy):
local = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users[chosenUsers[idx]],
tb=summary)
w_1st_ep, w_2st_ep, w, loss, acc = local.update_weights(net=copy.deepcopy(net_glob))
### get updated local weights ###
w_locals.append(copy.deepcopy(w))
### record 1st-ep and 2nd-ep local weights ###
w_locals_1ep.append(copy.deepcopy(w_1st_ep))
w_locals_2ep.append(copy.deepcopy(w_2st_ep))
### get local loss ###
loss_locals.append(copy.deepcopy(loss))
# print("User:", chosenUsers[idx], " Acc:", acc, " Loss:", loss)
acc_locals.append(copy.deepcopy(acc))
### for lazy user ###
else:
### copy ###
k = random.randint(0, (idx -1))
lazy_locals = copy.deepcopy(w_locals[k])
lazy_locals_1ep = copy.deepcopy(w_locals_1ep[k])
lazy_locals_2ep = copy.deepcopy(w_locals_2ep[k])
w_locals.append(copy.deepcopy(lazy_locals))
w_locals_1ep.append(copy.deepcopy(lazy_locals_1ep))
w_locals_2ep.append(copy.deepcopy(lazy_locals_2ep))
lazy_loss = copy.deepcopy(loss_locals[k])
lazy_acc = copy.deepcopy(acc_locals[k])
loss_locals.append(copy.deepcopy(lazy_loss))
acc_locals.append(copy.deepcopy(lazy_acc))
### perturb 'w_local' ###
w_locals[len(chosenUsers)-args.set_lazy:len(chosenUsers)]= noise_add(args, noise_scale, \
w_locals[len(chosenUsers)-args.set_lazy:len(chosenUsers)]) # noise variance is 0.01#
w_locals_1ep[len(chosenUsers) - args.set_lazy:len(chosenUsers)] = noise_add(args, noise_scale, \
w_locals_1ep[len(chosenUsers) - args.set_lazy:len(chosenUsers)])
w_locals_2ep[len(chosenUsers) - args.set_lazy:len(chosenUsers)] = noise_add(args, noise_scale, \
w_locals_2ep[len(chosenUsers) - args.set_lazy:len(chosenUsers)])
### theta para estimate ###
if iter == (args.epochs - 1):
local = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users[chosenUsers[idx]],
tb=summary)
w_1st_ep, w_2st_ep, w, loss, acc = local.update_weights(net=copy.deepcopy(net_glob))
w_lazy_diff_list.append(get_2_norm(w, w_locals[k]))
### perturb weight ###
w_locals = noise_add(args, noise_scale, w_locals)
### update global weights ###
# w_locals = users_sampling(args, w_locals, chosenUsers)
w_glob = average_weights(w_locals)
### update 1ep_weights ###
w_1ep = average_weights(w_locals_1ep)
# copy weight to net_glob
net_glob.load_state_dict(w_glob)
# global test
list_acc, list_loss = [], []
grad_list, grad_local_list = [], []
chixi_list, delta_list, = [], []
w_avg ,w_last_avg = [], [],
grad_local = []
grad_glob = []
para_loss = []
net_glob.eval()
for c in range(args.num_users):
net_local = LocalUpdate(args=args, dataset=dataset_test, idxs=dict_sever[c], tb=summary)
acc, loss = net_local.test(net=net_glob)
# acc, loss = net_local.test_gen(net=net_glob, idxs=dict_users[c], dataset=dataset_test)
list_acc.append(copy.deepcopy(acc))
list_loss.append(copy.deepcopy(loss))
for c in range(args.num_users):
net_local = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users[c], tb=summary)
acc, loss = net_local.test(net=net_glob)
# acc, loss = net_local.test_gen(net=net_glob, idxs=dict_users[c], dataset=dataset_test)
para_loss.append(copy.deepcopy(loss))
### for lazy user ###
grad_locals_1ep, grad_locals_glob, grad_list, delta_list = [], [], [], []
for idx in range(len(chosenUsers)):
###-calculate gradients-###
grad_locals_glob.append(calculate_grads(args, w_glob_pre, w_locals_1ep[idx]))
grad_locals_1ep.append(calculate_grads(args, w_locals_1ep[idx], w_locals_2ep[idx]))
grad_list.append(get_2_norm(grad_locals_glob[idx], grad_locals_1ep[idx]) / \
get_2_norm(w_glob_pre, w_locals_1ep[idx]))
grad_glob = avg_grads(grad_locals_glob)
for idx in range(len(chosenUsers)):
delta_list.append(get_2_norm(grad_locals_glob[idx], grad_glob))
### different_w ###
for idx in range(len(chosenUsers)):
#diff_w = w_locals_1ep[idx] - w_glob
w_difference.append(get_2_norm( w_locals[chosenUsers[idx]], w_glob))
### loss_difference ###
for idx in range(len(chosenUsers)):
diff_loss = loss_locals[idx] - para_loss[idx]
difference_loss.append(np.linalg.norm(diff_loss))
### update lazy diff weights ###
if iter == (args.epochs - 1) and args.set_lazy != 0:
w_lazy_diff = sum(w_lazy_diff_list) / len(w_lazy_diff_list)
### chixi_list ###
for idx in range(len(chosenUsers)):
chixi_list.append(difference_loss[idx] / w_difference[idx])
chixi_avg = sum(chixi_list) / len(chixi_list)
L_avg = sum(grad_list) / len(grad_list)
delta_avg = sum(delta_list) / len(delta_list)
loss_avg = sum(loss_locals) / len(loss_locals)
acc_avg = sum(acc_locals) / len(acc_locals)
loss_avg_list.append(loss_avg)
acc_avg_list.append(acc_avg)
print("\nTrain loss: {}, Train acc: {}".\
format(loss_avg_list[-1], acc_avg_list[-1]))
print("\nTest loss: {}, Test acc: {}".\
format(sum(list_loss) / len(list_loss), sum(list_acc) / len(list_acc)))
Lipschitz_chixi.append(chixi_avg)
smooth_L.append(L_avg)
gap_delta.append(delta_avg)
if args.set_lazy != 0:
lazy_theta.append(w_lazy_diff)
loss_train.append(loss_avg)
acc_train.append(acc_avg)
loss_test.append(sum(list_loss) / len(list_loss))
acc_test.append(sum(list_acc) / len(list_acc))
# plot loss curve
final_train_loss[s][j] = copy.deepcopy(sum(loss_train) / len(loss_train))
final_train_accuracy[s][j] = copy.deepcopy(sum(acc_train) / len(acc_train))
final_test_loss[s][j] = copy.deepcopy(sum(loss_test) / len(loss_test))
final_test_accuracy[s][j] = copy.deepcopy(sum(acc_test) / len(acc_test))
final_Lipschitz_chixi[s][j] = copy.deepcopy(sum(Lipschitz_chixi) / len(Lipschitz_chixi))
final_smooth_L[s][j] = copy.deepcopy(sum(smooth_L) / len(smooth_L))
final_gap_delta[s][j] = copy.deepcopy(sum(gap_delta) / len(gap_delta))
if args.set_lazy != 0 :
final_lazy_theta[s][j] = copy.deepcopy(sum(lazy_theta) / len(lazy_theta))
print('\nFinal train loss:', final_train_loss)
print('\nFinal train accuracy:', final_train_accuracy)
print('\nFinal test loss:', final_test_loss)
print('\nFinal test accuracy:', final_test_accuracy)
print('\nFinal Lipschitz chixi:', final_Lipschitz_chixi)
print('\nFinal smooth L:', final_smooth_L)
print('\nFinal delta:', final_gap_delta)
if args.set_lazy != 0:
print('\nFinal theta:', final_lazy_theta)
timeslot = int(time.time())
dt = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timeslot))
with open('./SimulationData/new_fed_{}UEs_{}_{}_{}_{}_{}_C{}_lr{}_iid{}_{}_{}.csv'.\
format(args.num_users, args.dataset,\
args.model,args.total_time, args.local_frequence,args.bl_antifrequence,args.epochs, args.lr, args.iid, noise_scale, timeslot),'w',encoding='utf-8') as f:
f.write('Test_loss:')
f.write(str(final_train_loss))
f.write('\nTest_accuracy:')
f.write(str(final_train_accuracy))
f.write('\nTrain_loss:')
f.write(str(final_test_loss))
f.write('\nTrain_accuracy:')
f.write(str(final_test_accuracy))
f.write('\nLipschitz chixi:')
f.write(str(final_Lipschitz_chixi))
f.write('\nsmooth L:')
f.write(str(final_smooth_L))
f.write('\ndelta:')
f.write(str(final_gap_delta))
if args.set_lazy != 0:
f.write('\ntheta:')
f.write(str(final_lazy_theta))
f.write('\nsigma:')
f.write(str(noise_scale))