-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_multiple_choice.py
419 lines (344 loc) · 13.6 KB
/
run_multiple_choice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for multiple choice (Bert, Roberta, XLNet)."""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
import torch
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
TrainingArguments,
set_seed,
)
from mytrainer import Trainer
logger = logging.getLogger(__name__)
def simple_accuracy(preds, labels):
return (preds == labels).mean()
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
recursive_step: int = field(
default=2,
metadata={"help": "REM-Net recursive step"}
)
erasure_k: int = field(
default=2,
metadata={"help": "REM-Net number of erased evidence per recursive step"}
)
attention_drop: float = field(
default=0.1,
metadata={"help": "huggingface RoBERTa config.attention_probs_dropout_prob"}
)
hidden_drop: float = field(
default=0.1,
metadata={"help": "huggingface RoBERTa config.hidden_dropout_prob"}
)
# training
roberta_lr: float = field(
default=5e-6,
metadata={"help": "learning rate for updating roberta parameters"}
)
gcn_lr: float = field(
default=5e-6,
metadata={"help": "learning rate for updating gcn parameters"}
)
proj_lr: float = field(
default=5e-6,
metadata={"help": "learning rate for updating fc parameters"}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: str = field(metadata={"help": ""})
data_dir: str = field(metadata={"help": "Should contain the data files for the task."})
evid_dir: str = field(metadata={"help": ""})
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
demo_data: bool = field(
default=False,
metadata={"help": "demo data sets with 100 samples."}
)
def collate_fn(batch):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
input_ids, input_mask, segment_ids, labels, ante_feats, cons_feats, question_types = zip(*batch)
input_ids = torch.tensor(input_ids)
input_mask = torch.tensor(input_mask)
segment_ids = torch.tensor(segment_ids)
labels = torch.tensor(labels)
ante_feats = tuple(np.expand_dims(item, axis=0) for item in ante_feats)
ante_feats = np.concatenate(ante_feats, axis=0)
ante_feats = torch.from_numpy(ante_feats)
if cons_feats[0] is not None:
cons_feats = tuple(np.expand_dims(item, axis=0) for item in cons_feats)
cons_feats = np.concatenate(cons_feats, axis=0)
cons_feats = torch.from_numpy(cons_feats)
evid_feats = [ante_feats.to(device), cons_feats.to(device)]
else:
evid_feats = ante_feats.to(device)
if question_types[0] is not None:
question_types = torch.tensor(question_types)
else:
question_types = None
# print('collate: {}'.format(evid_feats.size()))
batch_output = {
"input_ids": input_ids.to(device),
"attention_mask": input_mask.to(device),
"token_type_ids": segment_ids.to(device),
"labels": labels.to(device),
"evid_feats": evid_feats,
"question_types": question_types
}
return batch_output
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
from data_wiqa import WIQAProcessor, WIQAData
from data_cosmosqa import CosmosQAProcessor, CosmosQAData
processors = {
"wiqa": WIQAProcessor,
"cosmosqa": CosmosQAProcessor
}
datasets = {
"wiqa": WIQAData,
"cosmosqa": CosmosQAData
}
if data_args.task_name == "wiqa":
from data_wiqa import Split
elif data_args.task_name == "cosmosqa":
from data_cosmosqa import Split
else:
raise NotImplementedError
try:
processor = processors[data_args.task_name]()
label_list = processor.get_labels()
num_labels = len(label_list)
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
if "roberta-large" in model_args.model_name_or_path:
from model_remnet_roberta import REMNet # to remove
elif "bert-large" in model_args.model_name_or_path or "bert-base" in model_args.model_name_or_path:
from model_remnet_bert import REMNet
else:
raise Exception()
model = REMNet.from_pretrained(
model_args.model_name_or_path,
config=config,
num_choices=num_labels,
recursive_step=model_args.recursive_step,
erasure_k=model_args.erasure_k
)
train_dataset = (
datasets[data_args.task_name](
task=data_args.task_name,
data_dir=data_args.data_dir,
evid_dir=data_args.evid_dir,
mode=Split.train,
tokenizer=tokenizer,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
demo=data_args.demo_data
)
if training_args.do_train
else None
)
eval_dataset = (
datasets[data_args.task_name](
task=data_args.task_name,
data_dir=data_args.data_dir,
evid_dir=data_args.evid_dir,
mode=Split.dev,
tokenizer=tokenizer,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
demo=data_args.demo_data
)
if training_args.do_eval
else None
)
test_dataset = (
datasets[data_args.task_name](
task=data_args.task_name,
data_dir=data_args.data_dir,
evid_dir=data_args.evid_dir,
mode=Split.test,
tokenizer=tokenizer,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
)
if training_args.do_predict
else None
)
def compute_metrics(p: EvalPrediction) -> Dict:
if hasattr(p, 'question_types'):
preds = np.argmax(p.predictions, axis=1)
score_in, n_in = 0.0, 0
score_out, n_out = 0.0, 0
score_no, n_no = 0.0, 0
result_writer = open(os.path.join(training_args.output_dir, "test_preds.txt"), 'a')
result_writer.write("id, qtype, pred, label\n")
for i, (pred, qtype, label_id) in enumerate(zip(preds, p.question_types, p.label_ids)):
result_writer.write('{}, {}, {}, {}\n'.format(i, qtype, pred, label_id))
if qtype == 1: # question_type: in_para
if pred == label_id: score_in += 1
n_in += 1
elif qtype == 2: # question_type: out_of_para
if pred == label_id: score_out += 1
n_out += 1
elif qtype == 3: # question_type: no_effect
if pred == label_id: score_no += 1
n_no += 1
else:
raise Exception()
result_writer.close()
score_in = score_in / n_in
score_out = score_out / n_out
score_no = score_no / n_no
return {"acc": simple_accuracy(preds, p.label_ids),
"acc_in": score_in,
"acc_out": score_out,
"acc_no": score_no
}
else:
preds = np.argmax(p.predictions, axis=1)
return {"acc": simple_accuracy(preds, p.label_ids)}
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
data_collator=collate_fn
)
# Save model_args and data_args
torch.save(model_args, os.path.join(training_args.output_dir, "model_args.bin"))
torch.save(data_args, os.path.join(training_args.output_dir, "data_args.bin"))
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
ckpt_id = model_args.model_name_or_path.split("-")[-1]
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
result = trainer.evaluate(task_name=data_args.task_name)
output_eval_file = os.path.join(training_args.output_dir, "eval_results_{}.txt".format(ckpt_id))
if trainer.is_world_master():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(result)
# Test
if training_args.do_predict:
if data_args.task_name == "wiqa":
logger.info("*** Test ***")
test_result = trainer.predict(task_name=data_args.task_name,
test_dataset=test_dataset)
output_test_file = os.path.join(training_args.output_dir, "test_results_{}.txt".format(ckpt_id))
if trainer.is_world_master():
with open(output_test_file, "w") as writer:
logger.info("***** Test results *****")
for key, value in test_result.metrics.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(test_result.metrics)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()