diff --git a/TelescopeML/StatVisAnalyzer.py b/TelescopeML/StatVisAnalyzer.py index 378ea8dd..863f0bb0 100644 --- a/TelescopeML/StatVisAnalyzer.py +++ b/TelescopeML/StatVisAnalyzer.py @@ -176,7 +176,7 @@ def regression_report(trained_model, f.tight_layout() target_name = ['Gravity', 'C_O_ratio', 'Metallicity', 'Temperature'][i] - plt.savefig(f'../outputs/figures/regression_report_{target_name}.pdf', format='pdf') + # plt.savefig(f'../outputs/figures/regression_report_{target_name}.pdf', format='pdf') plt.show() def filter_dataset_range(dataset, filter_params): @@ -537,7 +537,7 @@ def boxplot_hist(data, x_label = 'c_o_ratio' if x_label == '[M/H]': x_label = 'metallicity' - plt.savefig(f'../outputs/figures/boxplot_hist_{x_label}.pdf', format='pdf') + # plt.savefig(f'../outputs/figures/boxplot_hist_{x_label}.pdf', format='pdf') plt.show() @@ -1396,7 +1396,7 @@ def plot_filtered_dataframe(dataset, filter_bounds, feature_to_plot, title_label dict_features = {'temperature': 'T$_{eff}$ [K]', 'gravity': 'log$g$', 'metallicity': '[M/H]', 'c_o_ratio': 'C/O'} cbar.set_label(dict_features[feature_to_plot]) - plt.savefig(os.path.join(__reference_data__, 'figures', feature_to_plot + "_trainin_examples.pdf"), dpi=500, - bbox_inches='tight') + # plt.savefig(os.path.join(__reference_data__, 'figures', feature_to_plot + "_trainin_examples.pdf"), dpi=500, + # bbox_inches='tight') plt.show() diff --git a/docs/conf.py b/docs/conf.py index 23bd8968..967ac626 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -97,8 +97,8 @@ } -#nbsphinx_prolog = """ -#{% set docname = env.doc2path(env.docname, base=None) %} -#.. note:: `Download full notebook here `_ -#""" -###.. only:: html +nbsphinx_prolog = """ +{% set docname = env.doc2path(env.docname, base=None) %} +.. note:: `Download full notebook here `_ +""" +##.. only:: html diff --git a/docs/index.rst b/docs/index.rst index 4aa2f4f2..1b577ad1 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -33,7 +33,7 @@ or simply... ====================== .. toctree:: - :maxdepth: 1 + :maxdepth: 2 :hidden: Installation diff --git a/docs/knowledgebase.rst b/docs/knowledgebase.rst index a9603152..d35ae241 100644 --- a/docs/knowledgebase.rst +++ b/docs/knowledgebase.rst @@ -1,9 +1,3 @@ KnowledgeBase =============== -ML Concepts: Data processing and Model Training in CNN -------------------------------------------------------- -.. toctree:: - :maxdepth: 2 - - Neural Network Arch diff --git a/docs/tutorials.rst b/docs/tutorials.rst index f7900072..9b7ca8bb 100644 --- a/docs/tutorials.rst +++ b/docs/tutorials.rst @@ -1,21 +1,22 @@ Tutorials ========== + Exploring the Datasets ----------------------- .. toctree:: - :maxdepth: 3 + :maxdepth: 1 Brown Dwarf Synthetic Dataset - + Predict Atmospheric Parameters ------------------------------- .. toctree:: - :maxdepth: 3 + :maxdepth: 2 Deploy CNN Model to Predict Brown Dwarf Atmospheric Parameters @@ -24,14 +25,14 @@ Predict Atmospheric Parameters + Train a Regression ML Model ---------------------------- .. toctree:: - :maxdepth: 3 + :maxdepth: 2 Train a Regression ConvNN Model using the BOHB Tuned Hyperparameters -