-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy patharguments.py
645 lines (515 loc) · 20 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
# Copyright 2024 The GPT-Accelera Team
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import logging
from dataclasses import dataclass, field
from typing import Optional
from pathlib import Path
import torch
logger = logging.getLogger(__name__)
@dataclass
class Arguments:
do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
do_eval: bool = field(
default=False, metadata={"help": "Whether to run eval on the dev set."}
)
do_test: bool = field(
default=False, metadata={"help": "Whether to run eval on the test set."}
)
do_predict: bool = field(
default=False, metadata={"help": "Whether to run predictions on the test set."}
)
# Data
source_max_len: int = field(
default=1024, metadata={"help": "Maximum length of source sequence."}
)
target_max_len: int = field(
default=256, metadata={"help": "Maximum length of target sequence."}
)
total_max_len: int = field(
default=None, metadata={"help": "Maximum length of total sequence."}
)
dataset: str = field(
default="alpaca", metadata={"help": "Which dataset to finetune on."}
)
eval_dataset: Optional[str] = field(
default=None, metadata={"help": "Which dataset to evaluate on."}
)
test_dataset: Optional[str] = field(
default=None, metadata={"help": "Which dataset to test on."}
)
dataset_format: str = field(
default=None, metadata={"help": "Which dataset format is used."}
)
add_eos_to_target: bool = field(
default=False, metadata={"help": "Whether to add an EOS token to the target."}
)
add_eos_to_marked_target: bool = field(
default=False,
metadata={"help": "Whether to add an EOS token to the marked target."},
)
eval_dataset_size: Optional[int] = field(
default=None, metadata={"help": "Number of examples to use for evaluation."}
)
max_eval_samples: Optional[int] = field(
default=None, metadata={"help": "Maximum number of samples to evaluate."}
)
eval_size: int = field(
default=0, metadata={"help": "Number of examples to use for evaluation."}
)
# Training
num_train_epochs: int = field(
default=1, metadata={"help": "Number of training epochs."}
)
learning_rate: float = field(default=1e-4, metadata={"help": "Learning rate."})
lr_eta_min: float = field(
default=0.0, metadata={"help": "Learning rate min in schedule."}
)
per_device_train_batch_size: int = field(
default=4, metadata={"help": "Batch size per GPU for training."}
)
per_device_eval_batch_size: int = field(
default=None, metadata={"help": "Batch size per GPU for evaluation."}
)
micro_train_batch_size: Optional[int] = field(
default=None, metadata={"help": "Micro batch size for training."}
)
num_train_steps: Optional[int] = field(
default=None, metadata={"help": "Number of training steps."}
)
max_train_samples: Optional[int] = field(
default=None, metadata={"help": "Maximum number of samples to train on."}
)
train_on_source: bool = field(
default=False, metadata={"help": "Whether to train on source."}
)
train_on_every_token: bool = field(
default=False,
metadata={"help": "Whether to train on every token for reward modeling."},
)
warmup_ratio: float = field(
default=0.2,
metadata={"help": "Linear warmup ratio for learning rate scheduler."},
)
tensor_parallel_size: Optional[int] = field(
default=None, metadata={"help": "Tensor parallel size."}
)
vocab_parallel: bool = field(
default=False, metadata={"help": "Whether to use vocabulary parallelism."}
)
sequence_parallel: bool = field(
default=False,
metadata={"help": "Whether to use sequence parallelism for activations."},
)
adam_beta1: float = field(default=0.9, metadata={"help": "Adam beta1."})
adam_beta2: float = field(default=0.999, metadata={"help": "Adam beta2."})
adam_eps: float = field(default=1e-8, metadata={"help": "Adam epsilon."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay."})
optimizer_cpu_offload: bool = field(
default=False,
metadata={
"help": "Whether to offload optimizer states to CPU during fine-tuning."
},
)
# Reward modeling
reward_head_init_scheme: str = field(
default="zeros",
metadata={"help": "Whether to initialize the reward head with zeros."},
)
process_reward_with_answer: bool = field(
default=False,
metadata={"help": "Whether to apply process reward with answer."},
)
# Direct Preference Optimization
dpo_variant: str = field(
default="dpo",
metadata={"help": "Which variant of DPO to use."},
)
dpo_beta: float = field(
default=0.1,
metadata={"help": "Beta for DPO."},
)
dpo_label_smoothing: float = field(
default=0.0,
metadata={"help": "Label smoothing for DPO."},
)
dpo_pm_checkpoint_path: Optional[Path] = field(
default=None,
metadata={"help": "Path to the preference model checkpoint to load."},
)
dpo_pm_total_max_len: Optional[int] = field(
default=None,
metadata={"help": "Maximum length of total sequence for preference model."},
)
# Mixed precision
param_dtype: str = field(
default="bf16",
metadata={"help": "Parameter datatype for mixed precision training."},
)
compute_dtype: str = field(
default="bf16",
metadata={"help": "Reduce operation datatype for mixed precision training."},
)
optim_dtype: Optional[str] = field(
default=None,
metadata={"help": "Optimizer state datatype for mixed precision training."},
)
# Checkpointing
checkpoint_path: Optional[Path] = field(
default=None, metadata={"help": "Path to the checkpoint to load."}
)
sft_checkpoint_path: Optional[Path] = field(
default=None, metadata={"help": "Path to the sft checkpoint to load."}
)
rm_checkpoint_path: Optional[Path] = field(
default=None, metadata={"help": "Path to the reward model checkpoint to load."}
)
# save_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`):
# The checkpoint save strategy to adopt during training. Possible values are:
# - `"no"`: No save is done during training.
# - `"epoch"`: Save is done at the end of each epoch.
# - `"steps"`: Save is done every `save_steps`.
save_strategy: str = field(
default="no",
metadata={"help": "The checkpoint save strategy to use."},
)
save_dir: Optional[Path] = field(
default=None, metadata={"help": "Directory to save checkpoints to."}
)
save_steps: Optional[int] = field(
default=None, metadata={"help": "Save checkpoint every X steps."}
)
eval_steps: Optional[int] = field(
default=None, metadata={"help": "Evaluate every X steps."}
)
resume_from_checkpoint: bool = field(
default=False, metadata={"help": "Whether to resume from checkpoint."}
)
save_total_limit: int = field(
default=1, metadata={"help": "Maximum number of checkpoints to save."}
)
save_only_model: bool = field(
default=False, metadata={"help": "Whether to only save the model."}
)
report_to: str = field(
default="none",
metadata={"help": "To use wandb or something else for reporting."},
)
wandb_name: Optional[str] = field(
default=None, metadata={"help": "Name of the wandb run."}
)
wandb_project: Optional[str] = field(
default=None, metadata={"help": "Name of the wandb project."}
)
wandb_entity: Optional[str] = field(
default=None, metadata={"help": "Name of the wandb entity."}
)
# Misc
compile: bool = field(
default=False, metadata={"help": "Compile the model forward function."}
)
profile: Optional[Path] = field(
default=None,
metadata={
"help": "Profile the model forward function and save the results to the given path."
},
)
seed: int = field(default=42, metadata={"help": "Random seed."})
print_training_examples: bool = field(
default=False, metadata={"help": "Whether to print training examples."}
)
# PPO
temperature: float = field(
default=1.0, metadata={"help": "Temperature for rollout in PPO."}
)
gradient_accumulation_steps: Optional[int] = field(
default=None,
metadata={
"help": "How many gradients to accumulate before to perform an optimizer step"
},
)
rollout_accumulation_steps: Optional[int] = field(
default=None,
metadata={"help": "How many rollouts to accumulate before PPO update"},
)
noptepochs: int = field(
default=2, metadata={"help": "Number of epochs in a single PPO update."}
)
max_grad_norm: float = field(
default=1.0, metadata={"help": "Maximum gradient norm for clipping."}
)
policy_model_fsdp: bool = field(
default=False,
metadata={"help": "Whether to use Fully Sharded Data Parallelism for policy."},
)
policy_model_cpu_offload: bool = field(
default=False,
metadata={
"help": "Whether to offload policy (params, grads, optim_states) to CPU."
},
)
policy_optimizer_cpu_offload: bool = field(
default=False,
metadata={"help": "Whether to offload policy optimizer states to CPU."},
)
value_model_fsdp: bool = field(
default=False,
metadata={"help": "Whether to use Fully Sharded Data Parallelism for value."},
)
value_model_cpu_offload: bool = field(
default=False,
metadata={
"help": "Whether to offload value (params, grads, optim_states) to CPU."
},
)
value_optimizer_cpu_offload: bool = field(
default=False,
metadata={"help": "Whether to offload value optimizer states to CPU."},
)
reward_model_fsdp: bool = field(
default=False,
metadata={"help": "Whether to use Fully Sharded Data Parallelism for reward."},
)
reward_model_cpu_offload: bool = field(
default=False,
metadata={
"help": "Whether to offload reward (params, grads, optim_states) to CPU."
},
)
reward_model_bits: int = field(
default=16,
metadata={"help": "Number of bits for reward model quantization."},
)
ref_policy_model_fsdp: bool = field(
default=False,
metadata={
"help": "Whether to use Fully Sharded Data Parallelism for ref policy."
},
)
ref_policy_model_cpu_offload: bool = field(
default=False,
metadata={
"help": "Whether to offload ref policy (params, grads, optim_states) to CPU."
},
)
ref_policy_model_bits: int = field(
default=16,
metadata={"help": "Number of bits for ref policy model quantization."},
)
ppo_warmup_steps: int = field(
default=5, metadata={"help": "Number of warmup steps for PPO."}
)
rollout_batch_size: int = field(
default=32, metadata={"help": "Batch size for rollouts."}
)
rollout_per_device_batch_size: int = field(
default=1, metadata={"help": "Per device batch size for rollouts."}
)
reward_model_per_device_batch_size: int = field(default=None)
step_batch_size: int = field(
default=32, metadata={"help": "Batch size for gradient updates."}
)
step_per_device_batch_size: int = field(
default=1, metadata={"help": "Per device batch size for gradient updates."}
)
penalize_no_stop_token: bool = field(
default=False,
metadata={
"help": "Whether to penalize sequences that do not contain stop_token."
},
)
penalty_reward_value: float = field(
default=-1.0,
metadata={
"help": "Reward assigned to sequences that are truncated, "
"e.g., due to outputting incomplete sentences for given context window."
},
)
relative_stop_token_penalty: bool = field(
default=False,
metadata={
"help": "Whether to penalize sequences that do not contain stop_token "
"with a relative penalty based on the original reward."
},
)
maxent_normalization: str = field(
default="full",
metadata={"help": "Normalization for maxent regularization."},
)
maxent_coef: float = field(default=0.0)
ent_reg_coef: float = field(default=0.0)
kl_coef: float = field(default=0.2)
kl_approximator: str = field(default="k1")
whiten_rewards: bool = field(default=True)
whitening_async_stats: str = field(
default="per_gpu",
metadata={"help": "How to sync statistics for advantage whitening."},
)
vf_coef: float = field(default=0.1)
cliprange: float = field(default=0.2)
cliprange_value: float = field(default=0.2)
gamma: float = field(default=1.0)
lam: float = field(default=1.0)
stop_token: Optional[str] = field(
default=None,
metadata={"help": "Token to stop generation with."},
)
min_seq_len: int = field(
default=0, metadata={"help": "Minimum sequence length for reward modeling."}
)
min_seq_len_coef: float = field(
default=0.0,
metadata={"help": "Coefficient for penalizing too short sequences."},
)
base_checkpoint_path: Path = field(
default="Undefined", metadata={"help": "Path to the policy base model to load."}
)
reward_base_checkpoint_path: Optional[Path] = field(
default=None, metadata={"help": "Path to the reward base model to load."}
)
value_base_checkpoint_path: Optional[Path] = field(
default=None, metadata={"help": "Path to the value base model to load."}
)
policy_checkpoint_path: Path = field(
default="Undefined", metadata={"help": "Path to the sft model to load."}
)
reward_checkpoint_path: Path = field(
default="Undefined", metadata={"help": "Path to the reward model to load."}
)
value_checkpoint_path: Optional[Path] = field(
default=None, metadata={"help": "Path to the value model to load."}
)
init_value_with_reward: bool = field(
default=True,
metadata={"help": "Initialize the value model with the reward model."},
)
outcome_reward: bool = field(
default=False,
metadata={"help": "Whether to use outcome reward."},
)
easy_outcome_reward: bool = field(
default=False,
metadata={"help": "Whether to use outcome reward on easy problems."},
)
fsdp_consolidate_cpu_offload: bool = field(
default=False,
metadata={"help": "Whether to offload FSDP consolidation to CPU."},
)
# Process Reward Model in PPO
apply_process_reward: bool = field(
default=False,
metadata={"help": "Whether to apply process reward in PPO."},
)
apply_terminal_process_reward: bool = field(
default=False,
metadata={"help": "Whether to apply aggregated process reward in PPO."},
)
process_reward_upper_bound: float = field(
default=1.0,
metadata={"help": "Upper bound for process reward."},
)
process_reward_scale: float = field(
default=1.0,
metadata={"help": "Scale for process reward."},
)
process_reward_scheme: str = field(
default="min",
metadata={"help": "How to compute process reward."},
)
minimal_reasoning_steps: Optional[int] = field(
default=None,
metadata={"help": "Number of minimal reasoning steps."},
)
truncate_on_negative_step: bool = field(
default=False,
metadata={"help": "Whether to truncate on negative step."},
)
slow_cross_node_comm: bool = field(
default=False,
metadata={"help": "Whether to optimize for cross-node communication."},
)
def __post_init__(self):
if self.param_dtype == "bf16":
self.param_dtype = torch.bfloat16
elif self.param_dtype == "fp32":
self.param_dtype = torch.float32
else:
raise ValueError(f"Unknown param_dtype: {self.param_dtype}")
if self.compute_dtype == "bf16":
self.compute_dtype = torch.bfloat16
elif self.compute_dtype == "fp32":
self.compute_dtype = torch.float32
else:
raise ValueError(f"Unknown compute_dtype: {self.compute_dtype}")
if self.optim_dtype is None:
self.optim_dtype = self.param_dtype
elif self.optim_dtype == "bf16":
self.optim_dtype = torch.bfloat16
elif self.optim_dtype == "fp32":
self.optim_dtype = torch.float32
else:
raise ValueError(f"Unknown optim_dtype: {self.optim_dtype}")
if self.base_checkpoint_path.name != "Undefined":
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if local_rank == 0:
logger.warning(f"Base checkpoint path: {self.base_checkpoint_path}")
world_size = int(os.environ.get("WORLD_SIZE", 1))
# Checks on rollout_batch_size only matter for PPO.
assert (
self.rollout_batch_size
>= self.rollout_per_device_batch_size * world_size
), (
"rollout_batch_size is smaller than rollout_per_device_batch_size * world_size. "
"Increase the former or decrease the latter to fix this."
)
assert (
self.rollout_batch_size
% (self.rollout_per_device_batch_size * world_size)
== 0
), "rollout_batch_size is not a multiple of rollout_per_device_batch_size * world_size. "
assert (
self.step_batch_size >= self.step_per_device_batch_size * world_size
), (
"step_batch_size is smaller than step_per_device_batch_size * world_size. "
"Increase the former or decrease the latter to fix this."
)
assert (
self.step_batch_size % (self.step_per_device_batch_size * world_size)
== 0
), "step_batch_size is not a multiple of step_per_device_batch_size * world_size. "
if local_rank == 0:
logger.warning(
f"Rollout stats:\n"
f"\trollout_batch_size: {self.rollout_batch_size}\n"
f"\trollout_per_device_batch_size: {self.rollout_per_device_batch_size}\n"
f"\tworld_size: {world_size}\n",
)
assert (
self.rollout_batch_size // self.rollout_per_device_batch_size
) % world_size == 0
self.rollout_accumulation_steps = (
self.rollout_batch_size
// self.rollout_per_device_batch_size
// world_size
)
if local_rank == 0:
logger.warning(
f"Step stats:\n"
f"\tstep_batch_size: {self.step_batch_size}\n"
f"\tstep_per_device_batch_size: {self.step_per_device_batch_size}\n"
f"\tworld_size: {world_size}\n",
)
assert (
self.step_batch_size // self.step_per_device_batch_size
) % world_size == 0
self.gradient_accumulation_steps = (
self.step_batch_size // self.step_per_device_batch_size // world_size
)
if local_rank == 0:
logger.warning(
f"Accumulation steps:\n"
f"\trollout_accumulation_steps: {self.rollout_accumulation_steps}\n"
f"\tgradient_accumulation_steps: {self.gradient_accumulation_steps}\n"
)