forked from linanqiu/word2vec-sentiments
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
72 lines (55 loc) · 2.12 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# gensim modules
from gensim import utils
from gensim.models.doc2vec import LabeledSentence
from gensim.models import Doc2Vec
# numpy
import numpy
# shuffle
from random import shuffle
# logging
import logging
import os.path
import sys
import cPickle as pickle
program = os.path.basename(sys.argv[0])
logger = logging.getLogger(program)
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s')
logging.root.setLevel(level=logging.INFO)
logger.info("running %s" % ' '.join(sys.argv))
class LabeledLineSentence(object):
def __init__(self, sources):
self.sources = sources
flipped = {}
# make sure that keys are unique
for key, value in sources.items():
if value not in flipped:
flipped[value] = [key]
else:
raise Exception('Non-unique prefix encountered')
def __iter__(self):
for source, prefix in self.sources.items():
with utils.smart_open(source) as fin:
for item_no, line in enumerate(fin):
yield LabeledSentence(utils.to_unicode(line).split(), [prefix + '_%s' % item_no])
def to_array(self):
self.sentences = []
for source, prefix in self.sources.items():
with utils.smart_open(source) as fin:
for item_no, line in enumerate(fin):
self.sentences.append(LabeledSentence(
utils.to_unicode(line).split(), [prefix + '_%s' % item_no]))
return self.sentences
def sentences_perm(self):
shuffle(self.sentences)
return self.sentences
sources = {'test-neg.txt':'TEST_NEG', 'test-pos.txt':'TEST_POS', 'train-neg.txt':'TRAIN_NEG', 'train-pos.txt':'TRAIN_POS', 'train-unsup.txt':'TRAIN_UNS'}
sentences = LabeledLineSentence(sources)
model = Doc2Vec(min_count=1, window=10, size=100, sample=1e-4, negative=5, workers=7)
model.build_vocab(sentences.to_array())
for epoch in range(50):
logger.info('Epoch %d' % epoch)
model.train(sentences.sentences_perm(),
total_examples=model.corpus_count,
epochs=model.iter,
)
model.save('./imdb.d2v')