-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistribution_func.cpp
369 lines (338 loc) · 13.8 KB
/
distribution_func.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#include "distribution_func.h"
#include "elastic_collisions.h"
#include <vector>
#include <numeric>
#include <algorithm>
DistributionFunction::DistributionFunction(const DistributionType distribution_type,
const double m, const SpaceGrid& x, const VelocityGrid& v,
const vector<double>& density, const vector<double>& temperature, const vector<vec3>& mean_vel) :
mass(m), space_grid(x), velocity_grid(v), distribution_function(field<cube>(x.GetSize())) {
size_t v_size = v.GetSize();
size_t x_size = distribution_function.n_elem;
double termal_velocity;
double termal_vel_factor = sqrt(2.0 / mass)*datum::c_0*100;
vector<double> vel_1D = v.Get1DGrid();
for(size_t i = 0; i < x_size; ++i){
cube slice(v_size, v_size, v_size);
termal_velocity = sqrt(temperature[i]) * termal_vel_factor;
double distr_factor = density[i] / pow(sqrt(datum::pi) * termal_velocity, 3);
for(size_t k = 0; k < v_size; ++k){
for(size_t l = 0; l < v_size; ++l){
for(size_t m = 0; m < v_size; ++m){
if(distribution_type == DistributionType::Maxwell){
slice(m,l,k) = distr_factor *
exp(- ( Sqr(vel_1D[k] - mean_vel[i](2))
+ Sqr(vel_1D[l] - mean_vel[i](1))
+ Sqr(vel_1D[m] - mean_vel[i](0)) ) / Sqr(termal_velocity) );
}else if(distribution_type == DistributionType::TestDistribution_1){
slice(m,l,k) = distr_factor *
exp(- ( Sqr(vel_1D[k] - mean_vel[i](2))
+ Sqr(vel_1D[l] - mean_vel[i](1))
+ Sqr(vel_1D[m] - mean_vel[i](0)) ) / Sqr(termal_velocity) )
* Sqr(vel_1D[l] / termal_velocity);
}
}
}
}
distribution_function(i) = move(slice);
}
}
DistributionFunction::DistributionFunction(const DistributionType distribution_type,
const double m, const SpaceGrid& x, const VelocityGrid& v,
vector<double>& density, vector<double>& temperature) :
mass(m), space_grid(x), velocity_grid(v), distribution_function(field<cube>(x.GetSize())){
size_t v_size = v.GetSize();
size_t x_size = distribution_function.n_elem;
double termal_velocity;
double termal_vel_factor = sqrt(2.0 / mass)*datum::c_0*100;
vector<double> vel_1D = v.Get1DGrid();
for(size_t i = 0; i < x_size; ++i){
cube slice(v_size, v_size, v_size);
termal_velocity = sqrt(temperature[i]) * termal_vel_factor;
double distr_factor = density[i] / pow(sqrt(datum::pi) * termal_velocity, 3);
for(size_t k = 0; k < v_size; ++k){
for(size_t l = 0; l < v_size; ++l){
for(size_t m = 0; m < v_size; ++m){
if(distribution_type == DistributionType::Maxwell){
slice(m,l,k) = distr_factor *
exp(- ( Sqr(vel_1D[k])
+ Sqr(vel_1D[l])
+ Sqr(vel_1D[m]) ) / Sqr(termal_velocity) );
}else if(distribution_type == DistributionType::TestDistribution_1){
slice(m,l,k) = distr_factor *
exp(- ( Sqr(vel_1D[k])
+ Sqr(vel_1D[l])
+ Sqr(vel_1D[m]) ) / Sqr(termal_velocity) )
* Sqr(vel_1D[l] / termal_velocity);
}
}
}
}
distribution_function(i) = move(slice);
}
}
DistributionFunction::DistributionFunction(const field<cube>& df, const double m, const SpaceGrid& x,
const VelocityGrid& v) : mass(m), space_grid(x), velocity_grid(v), distribution_function(df){}
DistributionFunction::DistributionFunction(const DistributionType distribution_type, const double m, const VelocityGrid& v,
const double density, const double temperature) :
mass(m), space_grid(), velocity_grid(v){
if(distribution_type == DistributionType::Maxwell){
distribution_function = {Maxwell(density, temperature)};
}else if(distribution_type == DistributionType::TestDistribution_1){
distribution_function = {TestDistribution_1(density, temperature)};
}
}
DistributionFunction::DistributionFunction(const cube& df, const double m, const VelocityGrid& v) : mass(m), space_grid(), velocity_grid(v){
distribution_function = {df};
};
VelocityGrid DistributionFunction::GetVelGrid() const{
return velocity_grid;
}
SpaceGrid DistributionFunction::GetSpaceGrid() const{
return space_grid;
}
vector<double> DistributionFunction::ComputeDensity() const{
vector<double> density;
density.reserve(distribution_function.n_elem);
double phase_volume = pow(velocity_grid.GetGridStep(),3);
for(const cube& item : distribution_function){
density.push_back(accu(item) * phase_volume);
}
return density;
}
double DistributionFunction::ComputeFallingDensity(bool Is_left_wall) const{
size_t v_size = velocity_grid.GetSize();
size_t size_of_integr_part = (v_size - 1) / 2;
double phase_volume = pow(velocity_grid.GetGridStep(),3);
double falling_density = 0.0;
if(Is_left_wall){
falling_density = accu(distribution_function(0)(span(0,size_of_integr_part - 1), span::all, span::all)) * phase_volume;
}else{
falling_density = accu(distribution_function(distribution_function.n_elem - 1)(span(size_of_integr_part + 1, v_size - 1), span::all, span::all)) * phase_volume;
}
return falling_density;
}
vector<double> DistributionFunction::ComputeTemperature(const vector<vec3>& mean_vel) const{
size_t x_size = space_grid.GetSize();
size_t v_size = velocity_grid.GetSize();
vector<double> vel_1D = velocity_grid.Get1DGrid();
vector<double> density = ComputeDensity();
vector<double> temperature(x_size, 0);
double phase_volume = pow(velocity_grid.GetGridStep(),3);
for(size_t i = 0; i < x_size; ++i){
if(density[i] > datum::eps){
double factor = mass * datum::eV * phase_volume / (3 * density[i] * Sqr(datum::c_0) );
for(size_t k = 0; k < v_size; ++k){
for(size_t l = 0; l < v_size; ++l){
for(size_t m = 0; m < v_size; ++m){
temperature[i] += ( Sqr(vel_1D[k] - mean_vel[i](2)) + Sqr(vel_1D[l] - mean_vel[i](1)) + Sqr(vel_1D[m] - mean_vel[i](0)) ) *
distribution_function(i)(m,l,k);
}
}
}
temperature[i] *= factor;
}
}
return temperature;
}
vector<double> DistributionFunction::ComputeTemperatureStatic() const{
return ComputeTemperature(vector<vec3>(space_grid.GetSize(), {0,0,0}));
}
vector<vec3> DistributionFunction::ComputeMeanVelocity() const{
size_t x_size = space_grid.GetSize();
size_t v_size = velocity_grid.GetSize();
vec vel_1D(velocity_grid.Get1DGrid());
vector<double> density = ComputeDensity();
vector<vec3> mean_vel(x_size, vec({0,0,0}));
double phase_volume = pow(velocity_grid.GetGridStep(),3);
for(size_t i = 0; i < x_size; ++i){
if(density[i] > datum::eps){
for(size_t k = 0; k < v_size; ++k){
for(size_t l = 0; l < v_size; ++l){
for(size_t m = 0; m < v_size; ++m){
mean_vel[i](0) += distribution_function(i)(m,l,k) * vel_1D(m);
mean_vel[i](1) += distribution_function(i)(m,l,k) * vel_1D(l);
mean_vel[i](2) += distribution_function(i)(m,l,k) * vel_1D(k);
}
}
}
mean_vel[i] *= phase_volume / density[i];
}
}
return mean_vel;
}
field<cube> DistributionFunction::GetFullDistribution() const{
return distribution_function;
}
cube DistributionFunction::GetDistrSlice(const size_t index) const{
return distribution_function(index);
}
double DistributionFunction::GetParticleMass() const{
return mass;
}
double DistributionFunction::ComputeTransportTimeStep() const{
return 0.5 * space_grid.GetGridStep() / velocity_grid.GetMax();
}
void DistributionFunction::Save(const size_t space_position, const string& file_name) const{
distribution_function(space_position).save(file_name, raw_binary);
}
void DistributionFunction::ChangeDFbyTransport(){
if(space_grid.GetSize() != 1){
for(size_t i = 0; i < space_grid.GetSize(); ++i){
distribution_function(i) += ComputeFlax(i) * ComputeTransportTimeStep() / space_grid.GetGridStep();
}
}
}
void DistributionFunction::ChangeDFbyProcess(const vector<cube>& rhs, const double time_step){
for(size_t i = 0; i < space_grid.GetSize(); ++i){
distribution_function(i) += rhs[i] * time_step;
}
}
vector<vec3> DistributionFunction::ComputeForceForSpitzerTest(const vector<cube>& rhs) const{
size_t x_size = space_grid.GetSize();
size_t v_size = velocity_grid.GetSize();
vec vel_1D(velocity_grid.Get1DGrid());
double phase_volume = pow(velocity_grid.GetGridStep(),3);
vector<vec3> Force(x_size, vec({0,0,0}));
for(size_t i = 0; i < space_grid.GetSize(); i++){
for(size_t k = 0; k < v_size; ++k){
for(size_t l = 0; l < v_size; ++l){
for(size_t m = 0; m < v_size; ++m){
Force[i](0) += rhs[i](m,l,k) * vel_1D(m);
Force[i](1) += rhs[i](m,l,k) * vel_1D(l);
Force[i](2) += rhs[i](m,l,k) * vel_1D(k);
}
}
}
Force[i] *= phase_volume * mass * datum::eV / (datum::c_0 * datum::c_0) * 1e3;
}
return Force;
}
cube DistributionFunction::Maxwell(double density, double temperature) const{
size_t v_size = velocity_grid.GetSize();
vector<double> vel_1D = velocity_grid.Get1DGrid();
cube maxwell(v_size, v_size, v_size);
double sqr_termal_vel = 2 * temperature / mass * datum::c_0 * datum::c_0 * 1e4;
double factor = density / pow(sqrt(datum::pi * sqr_termal_vel), 3);
for(size_t k = 0; k < v_size; ++k){
for(size_t l = 0; l < v_size; ++l){
for(size_t m = 0; m < v_size; ++m){
maxwell(m,l,k) = exp(- ( Sqr(vel_1D[k]) + Sqr(vel_1D[l]) + Sqr(vel_1D[m]) ) / sqr_termal_vel);
}
}
}
return maxwell * factor;
}
cube DistributionFunction::TestDistribution_1(double density, double temperature) const{
size_t v_size = velocity_grid.GetSize();
vector<double> vel_1D = velocity_grid.Get1DGrid();
cube distr(v_size, v_size, v_size);
double sqr_termal_vel = 2 * temperature / mass * datum::c_0 * datum::c_0 * 1e4;
double factor = density / pow(sqrt(datum::pi * sqr_termal_vel), 3);
for(size_t k = 0; k < v_size; ++k){
for(size_t l = 0; l < v_size; ++l){
for(size_t m = 0; m < v_size; ++m){
distr(m,l,k) = factor * exp( -( Sqr(vel_1D[k]) + Sqr(vel_1D[l]) + Sqr(vel_1D[m]) ) / sqr_termal_vel ) *
Sqr(vel_1D[l]) / sqr_termal_vel;
}
}
}
return distr;
}
cube DistributionFunction::MaxwellReflectedHalf(double density, double temperature, bool Is_left_wall) const{
size_t v_size = velocity_grid.GetSize();
size_t mid_index = (v_size - 1) / 2;
vector<double> vel_1D = velocity_grid.Get1DGrid();
cube maxwell(v_size, v_size, v_size, fill::zeros);
double sqr_termal_vel = 2 * temperature / mass * datum::c_0 * datum::c_0 * 1e4;
double factor = density / pow(sqrt(datum::pi * sqr_termal_vel), 3);
for(size_t k = 0; k < v_size; ++k){
for(size_t l = 0; l < v_size; ++l){
if(Is_left_wall){
for(size_t m = mid_index + 1; m < v_size; ++m){
maxwell(m,l,k) = factor * exp(- ( Sqr(vel_1D[k]) + Sqr(vel_1D[l]) + Sqr(vel_1D[m]) ) / sqr_termal_vel);
}
}else{
for(size_t m = 0; m < mid_index; ++m){
maxwell(m,l,k) = factor * exp(- ( Sqr(vel_1D[k]) + Sqr(vel_1D[l]) + Sqr(vel_1D[m]) ) / sqr_termal_vel);
}
}
}
}
return maxwell;
}
cube DistributionFunction::ConstTemperatureWallReflection(bool Is_left_wall) const{
size_t v_size = velocity_grid.GetSize();
cube wall_reflection(v_size, v_size, v_size);
if(Is_left_wall){
for(size_t k = 0; k < v_size; ++k){
wall_reflection = MaxwellReflectedHalf(ComputeFallingDensity(Is_left_wall), space_grid.GetWalls().walls_T.first, Is_left_wall);
}
}else{
for(size_t k = 0; k < v_size; ++k){
wall_reflection = MaxwellReflectedHalf(ComputeFallingDensity(Is_left_wall), space_grid.GetWalls().walls_T.second, Is_left_wall);
}
}
return wall_reflection;
}
cube DistributionFunction::WallPerfectReflection(bool Is_left_wall) const{
size_t v_size = velocity_grid.GetSize();
size_t mid_index = (v_size - 1) / 2;
cube wall_reflection(v_size, v_size, v_size);
if(Is_left_wall){
for(size_t k = 0; k < v_size; ++k){
mat tmp = flipud(distribution_function(0).slice(k));
wall_reflection.slice(k).rows(mid_index + 1, v_size - 1) =
tmp.rows(mid_index + 1, v_size - 1);
}
}else{
for(size_t k = 0; k < v_size; ++k){
mat tmp = flipud(distribution_function(distribution_function.n_elem - 1).slice(k));
wall_reflection.slice(k).rows(0, mid_index - 1) =
tmp.rows(0, mid_index - 1);
}
}
return wall_reflection;
}
cube DistributionFunction::FluxbyThreePoints(const cube& df_left, const cube& df_mid, const cube& df_right) const{
size_t v_size = velocity_grid.GetSize();
size_t mid_index = (v_size - 1) / 2;
vec vel_1D(velocity_grid.Get1DGrid());
cube flux(v_size,v_size,v_size);
for(size_t k = 0; k < v_size; ++k){
for(size_t l = 0; l < v_size; ++l){
for(size_t m = 0; m < v_size; ++m){
if(m < mid_index){
flux(m,l,k) = -vel_1D(m) * ( df_right(m,l,k) - df_mid(m,l,k));
}else if(m > mid_index){
flux(m,l,k) = vel_1D(m) * ( df_left(m,l,k) - df_mid(m,l,k));
}
}
}
}
return flux;
}
cube DistributionFunction::ComputeFlax(size_t slice_index) const{
cube flux;
if(slice_index == 0ul){
cube df_left;
if(space_grid.GetWalls().walls_BC.first == BC_Type::ConstantTemperatureWall){
df_left = ConstTemperatureWallReflection(true);
}else if(space_grid.GetWalls().walls_BC.first == BC_Type::PerfectReflection){
df_left = WallPerfectReflection(true);
}
flux = FluxbyThreePoints(df_left, distribution_function(0), distribution_function(1));
}else if(slice_index == space_grid.GetSize() - 1){
cube df_right;
if(space_grid.GetWalls().walls_BC.second == BC_Type::ConstantTemperatureWall){
df_right = ConstTemperatureWallReflection(false);
}else if(space_grid.GetWalls().walls_BC.second == BC_Type::PerfectReflection){
df_right = WallPerfectReflection(false);
}
flux = FluxbyThreePoints(distribution_function(slice_index - 1), distribution_function(slice_index), df_right);
}else{
flux = FluxbyThreePoints(distribution_function(slice_index - 1),
distribution_function(slice_index), distribution_function(slice_index + 1));
}
return flux;
}