forked from luckyvickyricky/DL_train_code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
199 lines (160 loc) · 6.44 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from torch.optim import Adam
from tqdm import tqdm
from torchmetrics.classification import (
ConfusionMatrix,
Recall,
Precision,
Accuracy,
F1Score,
)
class Trainer:
def __init__(self, config, model, device):
self.config = config
self.criterion = nn.CrossEntropyLoss()
self.model = model
self.device = device
self.model.to(self.device)
# 손실함수로 adam 설정
self.optim = Adam(lr=config.lr, params=self.model.parameters())
self.acc = Accuracy(
num_classes=self.config.num_classes, average="macro", task="multiclass"
).to(device)
self.precision = Precision(
num_classes=self.config.num_classes, average="macro", task="multiclass"
).to(device)
self.recall = Recall(
num_classes=self.config.num_classes, average="macro", task="multiclass"
).to(device)
self.f1 = F1Score(
num_classes=self.config.num_classes, average="macro", task="multiclass"
).to(device)
self.c_mat = ConfusionMatrix(
task="multiclass", num_classes=self.config.num_classes
).to(device)
def train(self, epoch, train_dataset: Dataset):
self.model.train()
train_loader = DataLoader(train_dataset, batch_size=self.config.batch_size, shuffle=True)
data_iter = tqdm(train_loader, desc=f"EP:{epoch}_train", total=len(train_loader), bar_format="{l_bar}{r_bar}")
# 성능 지표를 저장할 리스트 초기화
avg_loss = []
avg_acc = []
avg_precision = []
avg_recall = []
avg_f1 = []
for idx, batch in enumerate(data_iter):
if isinstance(self.model, nn.DataParallel):
primary_device = f"cuda:{self.model.device_ids[0]}"
else:
primary_device = self.device
# 딕셔너리 처리
#batch = {k: v.to(primary_device) for k, v in batch.items()}
# 튜플 처리
inputs, labels = batch
inputs, labels = inputs.to(primary_device), labels.to(primary_device)
self.optim.zero_grad()
# 기존 코드 (잘못된 접근)
# batch_inputs = batch_inputs.unsqueeze(1)
# 변경 후
inputs, labels = batch
batch_inputs = inputs.to(primary_device)
batch_labels = labels.to(primary_device)
# batch_inputs = inputs.unsqueeze(1) # 필요한 경우
output = self.model(batch_inputs)
loss = self.criterion(output, batch_labels.long())
preds = torch.argmax(output, dim=1)
acc = self.acc(preds, batch_labels)
recall = self.recall(preds, batch_labels)
precision = self.precision(preds, batch_labels)
f1 = self.f1(preds, batch_labels)
avg_loss.append(loss.item())
avg_acc.append(acc.item())
avg_recall.append(recall.item())
avg_precision.append(precision.item())
avg_f1.append(f1.item())
loss.backward()
self.optim.step()
post_fix = {
"loss": loss.item(),
"acc": acc.item(),
"precision": precision.item(),
"recall": recall.item(),
"f1-score": f1.item(),
}
data_iter.set_postfix(post_fix)
# 에포크별 평균 성능 지표 계산
avg_loss = np.mean(avg_loss)
avg_acc = np.mean(avg_acc)
avg_precision = np.mean(avg_precision)
avg_recall = np.mean(avg_recall)
avg_f1 = np.mean(avg_f1)
return {
"loss": avg_loss,
"acc": avg_acc,
"precision": avg_precision,
"recall": avg_recall,
"f1": avg_f1,
}
def eval(self, epoch, val_dataset):
self.model.eval()
val_loader = DataLoader(val_dataset, batch_size=self.config.batch_size)
data_iter = tqdm(val_loader, desc=f"EP:{epoch}_valid", total=len(val_loader))
# 에포크별 평균 성능 지표 계산
avg_loss = []
avg_acc = []
avg_precision = []
avg_recall = []
avg_f1 = []
c_mat = None
for idx, batch in enumerate(data_iter):
if isinstance(self.model, nn.DataParallel):
primary_device = f"cuda:{self.model.device_ids[0]}"
else:
primary_device = self.device
# 딕셔너리 처리
#batch = {k: v.to(primary_device) for k, v in batch.items()}
# 튜플 처리
inputs, labels = batch
inputs, labels = inputs.to(primary_device), labels.to(primary_device)
with torch.no_grad():
# 기존 코드 (잘못된 접근)
# batch_inputs = batch_inputs.unsqueeze(1)
# 변경 후
inputs, labels = batch
batch_inputs = inputs.to(primary_device)
batch_labels = labels.to(primary_device)
# batch_inputs = inputs.unsqueeze(1) # 필요한 경우
output = self.model(batch_inputs)
loss = self.criterion(output, batch_labels.long())
preds = torch.argmax(output, dim=1)
loss = self.criterion(output, batch_labels.long())
acc = self.acc(output, batch_labels)
recall = self.recall(output, batch_labels)
precision = self.precision(output, batch_labels)
f1 = self.f1(output, batch_labels)
avg_loss.append(loss.item())
avg_acc.append(acc.item())
avg_recall.append(recall.item())
avg_precision.append(precision.item())
avg_f1.append(f1.item())
if c_mat is None:
c_mat = self.c_mat(output, batch_labels)
else:
c_mat += self.c_mat(output, batch_labels)
# 에포크별 평균 성능 지표 계산
avg_loss = np.mean(avg_loss)
avg_acc = np.mean(avg_acc)
avg_precision = np.mean(avg_precision)
avg_recall = np.mean(avg_recall)
avg_f1 = np.mean(avg_f1)
return {
"loss": avg_loss,
"acc": avg_acc,
"precision": avg_precision,
"recall": avg_recall,
"f1": avg_f1,
}, c_mat
if __name__ == "__main__":
print(torch.cuda.is_available())