In this tutorial, we introduce the basic steps to create your customized dataset:
If your algorithm does not need any customized dataset, you can use these off-the-shelf datasets under datasets. But to use these existing datasets, you have to convert your dataset to existing dataset format.
Assuming the format of your dataset's annotation file is:
000001.jpg 0
000002.jpg 1
To write a new dataset, you need to implement:
DataSource
: inherited fromBaseDataSource
and responsible for loading the annotation files and reading images.Dataset
: inherited fromBaseDataset
and responsible for applying transformation to images and packing these images.
Assume the name of your DataSource
is NewDataSource
, you can create a file, named new_data_source.py
under mmselfsup/datasets/data_sources
and implement NewDataSource
in it.
import mmcv
import numpy as np
from ..builder import DATASOURCES
from .base import BaseDataSource
@DATASOURCES.register_module()
class NewDataSource(BaseDataSource):
def load_annotations(self):
assert isinstance(self.ann_file, str)
data_infos = []
# writing your code here.
return data_infos
Then, add NewDataSource
in mmselfsup/dataset/data_sources/__init__.py
.
from .base import BaseDataSource
...
from .new_data_source import NewDataSource
__all__ = [
'BaseDataSource', ..., 'NewDataSource'
]
Assume the name of your Dataset
is NewDataset
, you can create a file, named new_dataset.py
under mmselfsup/datasets
and implement NewDataset
in it.
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.utils import build_from_cfg
from torchvision.transforms import Compose
from .base import BaseDataset
from .builder import DATASETS, PIPELINES, build_datasource
from .utils import to_numpy
@DATASETS.register_module()
class NewDataset(BaseDataset):
def __init__(self, data_source, num_views, pipelines, prefetch=False):
# writing your code here
def __getitem__(self, idx):
# writing your code here
return dict(img=img)
def evaluate(self, results, logger=None):
return NotImplemented
Then, add NewDataset
in mmselfsup/dataset/__init__.py
.
from .base import BaseDataset
...
from .new_dataset import NewDataset
__all__ = [
'BaseDataset', ..., 'NewDataset'
]
To use NewDataset
, you can modify the config as the following:
train=dict(
type='NewDataset',
data_source=dict(
type='NewDataSource',
),
num_views=[2],
pipelines=[train_pipeline],
prefetch=prefetch,
))