
Alternative	numerical	solutions	for	the	ponded	water	store	

Introduction	

It	 is	 common	 in	 land	models	 to	 solve	 ordinary	 differential	 equations	 using	 explicit	 Euler	

approximations	 based	 on	 an	 operator-splitting	 approach	 with	 imposed	 constraints.	 This	

solution	 method	 can	 be	 problematic	 for	 three	 reasons:	 First,	 the	 sequential	 calculations	

limit	representations	of	the	coupling	across	processes	(i.e.,	the	solution	is	not	very	general);	

second,	the	explicit	Euler	method	relies	on	extrapolating	fluxes	computed	at	the	start	of	the	

time	step	for	the	entire	length	of	the	time	step	(i.e.,	the	solution	is	not	very	accurate);	and	

third,	 the	 imposition	 of	 sharp	 thresholds	 can	 lead	 to	 erratic	 model	 behavior	 which	

complicates	the	application	of	many	model	analysis	methods.	 In	the	following	sections	we	

will	 illustrate	 the	 current	 solution	method	 using	 the	 ODE	 for	 ponded	water,	 and	we	will	

introduce	alternative	solution	methods	that	are	more	general,	more	accurate,	and	that	avoid	

imposition	of	sharp	thresholds.	The	ponded	water	store	is	used	here	as	an	example	of	issues	

that	will	arise	in	other	components	of	land	models.	

1 Current	solution	methods	in	CLM	

Consider	the	following	ODE	for	ponded	water	

	
	

dSpond
dt

= qin −epond( )−qsurf −qd 		 (1)	

where		qin 	is	the	flux	at	the	upper	boundary,		
epond 	is	the	evaporation	from	the	pond,		

qsurf 	is	

the	surface	runoff,	and		qd 	is	the	drainage	at	the	lower	boundary.	The	sequence	of	steps	can	

be	to	(1)	add/subtract	net	input;	(2)	compute	surface	runoff;	and	(3)	compute	drainage,	as	

	 		Spond
* = Spond

n + qin −epond( )Δt 		 (2)	

	 		Spond
** = Spond

* −qsurf
* Δt 		 (3)	

	 		Spond
n+1 = Spond

** −qd
**Δt 		 (4)	



where	 the	 superscripts		n 	and			n+1 	define	 the	 start	 and	 the	 end	of	 the	 time	 step,	 and	 the	
superscripts	(*)	and	(**)	denote	intermediate	solutions.	The	fluxes	are	formulated	to	satisfy	

solution	constraints,	where,	for	example	

	

		
qsurf S( ) = min κ S − Smt( ) , S − Smt( ) Δt( ) S ≥ Smt

0 S < Smt
		 (5)	

	 		qd S( ) =min ksat ,S Δt( ) 		 (6)	

In	 the	 surface	 runoff	 example	κ 	(s-1)	 is	 the	 time	 constant	 for	 drainage,		Smt 	(m)	 is	 the	

threshold	 for	drainage	(e.g.,	 to	represent	micro-topography),	and	 in	 the	drainage	example	

	ksat 	(m	s
-1)	is	the	temporally	constant	saturated	hydraulic	conductivity.	

2 Alternative	solution	methods	

For	 simplicity	we	will	 continue	 to	 consider	 the	 fluxes	 sequentially	 –	 i.e.,		dS dt = −q .	We	

will	 show	 how	 alternative	 numerical	 methods	 can	 reduce	 erratic	 model	 behavior	 and	

improve	numerical	accuracy.	We	will	also	explain	how	some	of	the	numerical	methods	can	

be	extended	to	the	more	general	case	of	process	coupling.	

2.1 Surface	runoff	

The	 surface	 runoff	 flux	 in	 equation	 (5)	 is	 a	 linear	 equation	 and	 hence	 is	 fairly	

straightforward	to	solve.		

2.1.1 The	implicit	Euler	solution	

The	state	equation		
dS dt = −qsurf 	can	be	discretized	in	time	as	

	 		S
n+1 − Sn = −qsurf

n+1Δt 		 (7)	

where	the	superscript		n 	denotes	the	time	index.	Equation	(7)	is	an	implicit	equation	since	

the	flux	depends	on	the	state	at	the	end	of	the	time	step	(time	index			n+1 ).	Since	the	surface	



runoff	flux		
qsurf 	in	equation	(5)	has	a	linear	dependence	on	storage,	the	implicit	flux			qsurf

n+1 	at	

the	end	of	the	time	step	can	be	estimated	using	the	first-order	Taylor	series	expansion	

	
		
qsurf
n+1 = qsurf

n +
dqsurf
dS

⎛

⎝
⎜

⎞

⎠
⎟

n

Sn+1 − Sn( ) 		 (8)	

Combining	equations	(7)	and	(8),	then	and		

	

		

Sn+1 = Sn −
qsurf
n Δt

1+ dqsurf
dS

⎛

⎝
⎜

⎞

⎠
⎟

n

Δt

		 (9)	

Given		
qsurf =κ S − Smt( ) 	and		dqsurf dS =κ ,	and		

	
		
Sn+1 = Sn −

κ Sn − Smt( )Δt
1+κΔt Sn ≥ Smt 		 (10)	

Note	 that	 implicit	 Euler	 solution	 in	 equation	 (10)	 is	 no	more	 expensive	 than	 the	 implicit	

Euler	solution,	but	the	solution	is	much	more	accurate	and	does	not	require	use	of	the	“min”	

constraint.	

2.1.2 The	analytical	solution	

If	 	
qsurf 	is	 handled	 separately	 (i.e.,	 operator	 splitting),	 then	 it	 is	 possible	 to	 solve	

	
dS dt = −qsurf 	analytically.	Combining	terms	that	depend	on	storage	on	the	left-hand-side,	

the	state	equation	can	be	given	as	

	
		

dS
dt

−κ S − Smt( ) =1 		 (11)	

and	integrating	both	sides	of	equation	(25)	with	respect	to		t 	yields	



	
		

dS
−κ S − Smt( )∫ = 1dt∫ 		 (12)	

Calculating	the	indefinite	integrals	provides	

	
		
− 1
κ
ln S − Smt +C1 = t +C2 		 (13)	

and	rearranging	

	 		S − Smt = ±exp −κt −κ C2 −C1( )( ) 		 (14)	

Defining	an	arbitrary	constant	

	 		C = ±exp −κ C2 −C1( )( ) 		 (15)	

then		

	 		S − Smt =Cexp −κt( ) 		 (16)	

Given			t =0 ,	then			C = S0 − Smt ,	and	

	 		S t( ) = S0 − Smt( )exp −κt( )+ Smt S0 ≥ Smt 		 (17)	

where			S0 	is	the	storage	at	time			t =0 .	

2.2 Ponded	water	drainage	

The	 original	 parameterization	 for	 ponded	water	 drainage	 in	 equation	 (6)	 imposes	 a	 non-

negative	 storage	 constraint	 to	 avoid	 “over-draining”	 the	 ponded	 water	 store.	 This	 sharp	

threshold	can	create	erratic	model	behavior,	 since	similar	 simulations	can	be	on	different	

sides	of	the	threshold.	The	sharp	threshold	also	creates	difficulties	in	using	derivative-based	

numerical	methods	(such	as	 the	 implicit	Euler	method),	 since	 the	 “min”	 function	makes	 it	

difficult	to	parameterize	the	dependence	of	the	flux	on	storage.	



Kavetski	 and	Kuczera	 (2007)	 suggest	use	of	 a	 smoothing	kernel	 to	provide	an	alternative	

formulation	of	equation	(6),	where	

	 	
qd S( ) = ksat fs S( ) 		 (18)	

where		
fs S( ) 	is	 a	 dimensionless	 smoothing	 kernel.	 The	 smoothing	 kernel	 is	 selected	 such	

that	in	general			fs ≈1 ,	but	asymptotically			fs →0 	as			S→0 .	

A	conventient	exponential	smoothing	kernel	is	

	
		
fs S( ) =1−exp −

S − Sx
ms

⎛

⎝⎜
⎞

⎠⎟
		 (19)	

where		Sx 	is	 the	 lower	 solution	 bound	 (here			Sx =0 )	 and		ms 	defines	 the	 strength	 of	 the	

smoothing.	The	transition			fs →0 	becomes	“sharper”			ms →0 .	

The	modified	parameterization	in	equation	(18)	behaves	like	the	original	parameterization	

in	 equation	 (6)	whenever			fs ≈1 ,	 but	 produces	 a	 smooth	 asymptotic	 transition	 as			S→0 .	
The	smoothing	 in	equation	(18)	opens	up	 the	possibilities	 to	use	more	general	numerical	

solution	methods.	

2.2.1 The	implicit	Euler	solution	

The	state	equation		dS dt = −qd 	can	be	discretized	in	time	as	

	 		S
n+1 − Sn = −qd

n+1Δt 		 (20)	

where	the	superscript		n 	denotes	the	time	index.	As	in	the	surface	runoff	case,	equation	(20)	
is	an	implicit	equation	since	the	flux	depends	on	the	state	at	the	end	of	the	time	step	(time	

index			n+1 ).	

In	contrast	 to	equation	 (5),	equation	(18)	has	a	non-linear	dependence	on	storage	and	an	

iterative	 solution	 is	necessary	 (e.g.,	 using	 the	Newton-Raphson	method).	The	 implicit	 flux	

		qsurf
n+1,m+1 	after	an	iteration	can	be	estimated	using	the	first-order	Taylor	series	expansion	



	
		
qd
n+1,m+1 = qd

n+1,m +
dqd
dS

⎛

⎝⎜
⎞

⎠⎟

n+1,m

ΔSn+1,m 		 (21)	

where			ΔSn+1,m 	defines	the		mth 	iteration	increment.	

The	state	equation	for	drainage	can	then	be	formulated	as	

	
		
Sn+1,m − Sn( )+ΔSn+1,m = −ksat fsn+1,m −ksat dfs

dS
⎛

⎝⎜
⎞

⎠⎟

n+1,m

ΔSn+1,m 		 (22)	

where			Sn+1,m − Sn 	defines	the	state	increment	from	the	start	of	the	time	step	to	the	start	of	
an	 iteration.	 Here	 	fs 	and 	dfs dS 	are	 from	 equation	 (19)	 assuming	 		Sx =0 ,	 i.e.,	

		fs =1−exp −S ms( ) 	and			dfs dS = exp −S ms( ) ms .	Equation	(22)	can	 then	be	solved	 for	

the	iteration	increment			ΔSn+1,m 	as	

	

		

ΔSn+1,m =
Sn −ksat fs

n+1,m − Sn+1,m

1+ksat
dfs
dS

⎛

⎝⎜
⎞

⎠⎟

n+1,m 		 (23)	

and	the	state	updated	as	

	 		Sn+1,m+1 = Sn+1,m +ΔSn+1,m 		 (24)	

Equations	 (23)	 and	 (24)	 are	 applied	 repeatedly	 until			ΔSn+1,m 	is	 below	 a	 user-prescribed	
error	tolerance.	

2.2.2 The	analytical	solution	

As	with	surface	runoff,	if		qd 	is	handled	separately	(i.e.,	operator	splitting),	then	it	is	possible	

to	 solve		dS dt = −qd 	analytically.	 Combining	 terms	 that	 depend	 on	 storage	 on	 the	 left-

hand-side,	the	state	equation	can	be	given	as	



	
		

dS
dt

ksat f S( ) =1 		 (25)	

and	integrating	both	sides	of	equation	(25)	with	respect	to		t 	yields	

	
		

dS
ksat f S( )∫ = 1dt∫ 		 (26)	

Given			u=1−exp −S ms( ) ,	then			du dS = 1−u( ) ms ,	hence	

	
		

ms

−ksatu 1−u( )du∫ = 1dt∫ 		 (27)	

calculating	the	indefinite	integrals	provides	

	 		ms ln u−1 − ln u( ) ksat +C1 = t +C2 		 (28)	

and,	rearranging	terms	

	
		
u−1
u

= ±exp ksatt ms +ksat C2 −C1( ) ms( ) 		 (29)	

Defining	an	arbitrary	constant	

	 		C = ±exp ksat C2 −C1( ) ms( ) 		 (30)	

then	

	
		
u= − 1

Cexp ksatt ms( )−1 		 (31)	

Given			t =0 	

	 		C =1−1/u0 		 (32)	



and		S 	can	be	obtained	from	equation	(19)	as	

	 		S u( ) = − ln 1−u( )ms 		 (33)	

The	analytical	solution	hence	requires	implementing	equations	(31),	(32),	and	(33).	


