diff --git a/doc/source/tech_note/Hydrology/CLM50_Tech_Note_Hydrology.rst b/doc/source/tech_note/Hydrology/CLM50_Tech_Note_Hydrology.rst index c4e0824ea7..323c8ea24b 100644 --- a/doc/source/tech_note/Hydrology/CLM50_Tech_Note_Hydrology.rst +++ b/doc/source/tech_note/Hydrology/CLM50_Tech_Note_Hydrology.rst @@ -1197,7 +1197,7 @@ The saturated thickness is \Delta z_{sat} = z_{bedrock} - z_{\nabla}, where the water table :math:`z_{\nabla}` is determined by finding the -irst soil layer above the bedrock depth (section :numref:`Depth to Bedrock`) +first soil layer above the bedrock depth (section :numref:`Depth to Bedrock`) in which the volumetric water content drops below a specified threshold. The default threshold is set to 0.9. diff --git a/doc/source/tech_note/Photosynthesis/CLM50_Tech_Note_Photosynthesis.rst b/doc/source/tech_note/Photosynthesis/CLM50_Tech_Note_Photosynthesis.rst index 3f0c4849ae..e4f4f63836 100644 --- a/doc/source/tech_note/Photosynthesis/CLM50_Tech_Note_Photosynthesis.rst +++ b/doc/source/tech_note/Photosynthesis/CLM50_Tech_Note_Photosynthesis.rst @@ -47,17 +47,17 @@ Stomatal resistance ----------------------- CLM5 calculates stomatal conductance using the Medlyn stomatal conductance model (:ref:`Medlyn et al. 2011`). -Previous versions of CLM calculated leaf stomatal resistance is using the Ball-Berry conductance +Previous versions of CLM calculated leaf stomatal resistance using the Ball-Berry conductance model as described by :ref:`Collatz et al. (1991)` and implemented in global climate models (:ref:`Sellers et al. 1996`). The Medlyn model calculates stomatal conductance (i.e., the inverse of resistance) based on net leaf -photosynthesis, the vapor pressure deficit, and the CO\ :sub:`2` concentration at the leaf surface. +photosynthesis, the leaf-to-air vapor pressure difference, and the CO\ :sub:`2` concentration at the leaf surface. Leaf stomatal resistance is: .. math:: :label: 9.1 - \frac{1}{r_{s} } =g_{s} = g_{o} + 1.6(1 + \frac{g_{1} }{\sqrt{D}}) \frac{A_{n} }{{c_{s} \mathord{\left/ {\vphantom {c_{s} P_{atm} }} \right. \kern-\nulldelimiterspace} P_{atm} } } + \frac{1}{r_{s} } =g_{s} = g_{o} + 1.6(1 + \frac{g_{1} }{\sqrt{D_{s}}}) \frac{A_{n} }{{c_{s} \mathord{\left/ {\vphantom {c_{s} P_{atm} }} \right. \kern-\nulldelimiterspace} P_{atm} } } where :math:`r_{s}` is leaf stomatal resistance (s m\ :sup:`2` :math:`\mu`\ mol\ :sup:`-1`), :math:`g_{o}` is the minimum stomatal conductance @@ -65,7 +65,9 @@ where :math:`r_{s}` is leaf stomatal resistance (s m\ :sup:`2` photosynthesis (:math:`\mu`\ mol CO\ :sub:`2` m\ :sup:`-2` s\ :sup:`-1`), :math:`c_{s}` is the CO\ :sub:`2` partial pressure at the leaf surface (Pa), :math:`P_{atm}` is the atmospheric -pressure (Pa), and :math:`D` is the vapor pressure deficit at the leaf surface (kPa). +pressure (Pa), and :math:`D_{s}=(e_{i}-e{_s})/1000` is the leaf-to-air vapor pressure difference at the leaf surface (kPa) +where :math:`e_{i}` is the saturation vapor pressure (Pa) evaluated at the leaf temperature +:math:`T_{v}` , and :math:`e_{s}` is the vapor pressure at the leaf surface (Pa). :math:`g_{1}` is a plant functional type dependent parameter (:numref:`Table Plant functional type (PFT) stomatal conductance parameters`) and are the same as those used in the CABLE model (:ref:`de Kauwe et al. 2015 `). @@ -153,7 +155,7 @@ describe the implementation, modified here. In its simplest form, leaf net photosynthesis after accounting for respiration (:math:`R_{d}` ) is .. math:: - :label: 9.3 + :label: 9.2 A_{n} =\min \left(A_{c} ,A_{j} ,A_{p} \right)-R_{d} . @@ -162,7 +164,7 @@ The RuBP carboxylase (Rubisco) limited rate of carboxylation s\ :sup:`-1`) is .. math:: - :label: 9.4 + :label: 9.3 A_{c} =\left\{\begin{array}{l} {\frac{V_{c\max } \left(c_{i} -\Gamma _{\*} \right)}{c_{i} +K_{c} \left(1+{o_{i} \mathord{\left/ {\vphantom {o_{i} K_{o} }} \right. \kern-\nulldelimiterspace} K_{o} } \right)} \qquad {\rm for\; C}_{{\rm 3}} {\rm \; plants}} \\ {V_{c\max } \qquad \qquad \qquad {\rm for\; C}_{{\rm 4}} {\rm \; plants}} \end{array}\right\}\qquad \qquad c_{i} -\Gamma _{\*} \ge 0. @@ -171,7 +173,7 @@ RuBP (i.e., the light-limited rate) :math:`A_{j}` (:math:`\mu` \ mol CO\ :sub:`2` m\ :sup:`-2` s\ :sup:`-1`) is .. math:: - :label: 9.5 + :label: 9.4 A_{j} =\left\{\begin{array}{l} {\frac{J_{x}\left(c_{i} -\Gamma _{\*} \right)}{4c_{i} +8\Gamma _{\*} } \qquad \qquad {\rm for\; C}_{{\rm 3}} {\rm \; plants}} \\ {\alpha (4.6\phi )\qquad \qquad {\rm for\; C}_{{\rm 4}} {\rm \; plants}} \end{array}\right\}\qquad \qquad c_{i} -\Gamma _{\*} \ge 0. @@ -181,7 +183,7 @@ C\ :sub:`4` plants :math:`A_{p}` (:math:`\mu` \ mol CO\ :sub:`2` m\ :sup:`-2` s\ :sup:`-1`) is .. math:: - :label: 9.6 + :label: 9.5 A_{p} =\left\{\begin{array}{l} {3T_{p\qquad } \qquad \qquad {\rm for\; C}_{{\rm 3}} {\rm \; plants}} \\ {k_{p} \frac{c_{i} }{P_{atm} } \qquad \qquad \qquad {\rm for\; C}_{{\rm 4}} {\rm \; plants}} \end{array}\right\}. @@ -212,7 +214,7 @@ photosynthetically active radiation absorbed by the leaf. A common expression is the smaller of the two roots of the equation .. math:: - :label: 9.7 + :label: 9.6 \Theta _{PSII} J_{x}^{2} -\left(I_{PSII} +J_{\max } \right)J_{x}+I_{PSII} J_{\max } =0 @@ -227,7 +229,7 @@ with 4.6 :math:`\mu`\ mol J\ :sup:`-1`, the light utilized in electron transport is .. math:: - :label: 9.8 + :label: 9.7 I_{PSII} =0.5\Phi _{PSII} (4.6\phi ) @@ -244,7 +246,7 @@ The model uses co-limitation as described by :ref:`Collatz et al. (1991, 1992) smaller root of the equations .. math:: - :label: 9.9 + :label: 9.8 \begin{array}{rcl} {\Theta _{cj} A_{i}^{2} -\left(A_{c} +A_{j} \right)A_{i} +A_{c} A_{j} } & {=} & {0} \\ {\Theta _{ip} A^{2} -\left(A_{i} +A_{p} \right)A+A_{i} A_{p} } & {=} & {0} \end{array} . @@ -282,19 +284,19 @@ The parameters :math:`V_{c\max 25}`, :math:`T_{v}` (K), as: .. math:: - :label: 9.10 + :label: 9.9 \begin{array}{rcl} {V_{c\max } } & {=} & {V_{c\max 25} \; f\left(T_{v} \right)f_{H} \left(T_{v} \right)} \\ {J_{\max } } & {=} & {J_{\max 25} \; f\left(T_{v} \right)f_{H} \left(T_{v} \right)} \\ {T_{p} } & {=} & {T_{p25} \; f\left(T_{v} \right)f_{H} \left(T_{v} \right)} \\ {R_{d} } & {=} & {R_{d25} \; f\left(T_{v} \right)f_{H} \left(T_{v} \right)} \\ {K_{c} } & {=} & {K_{c25} \; f\left(T_{v} \right)} \\ {K_{o} } & {=} & {K_{o25} \; f\left(T_{v} \right)} \\ {\Gamma } & {=} & {\Gamma _{25} \; f\left(T_{v} \right)} \end{array} .. math:: - :label: 9.11 + :label: 9.10 f\left(T_{v} \right)=\; \exp \left[\frac{\Delta H_{a} }{298.15\times 0.001R_{gas} } \left(1-\frac{298.15}{T_{v} } \right)\right] and .. math:: - :label: 9.12 + :label: 9.11 f_{H} \left(T_{v} \right)=\frac{1+\exp \left(\frac{298.15\Delta S-\Delta H_{d} }{298.15\times 0.001R_{gas} } \right)}{1+\exp \left(\frac{\Delta ST_{v} -\Delta H_{d} }{0.001R_{gas} T_{v} } \right)} . @@ -310,7 +312,7 @@ Because :math:`T_{p}` as implemented here varies with :math:`V_{c\max}` . For C\ :sub:`4` plants, .. math:: - :label: 9.13 + :label: 9.12 \begin{array}{l} {V_{c\max } =V_{c\max 25} \left[\frac{Q_{10} ^{(T_{v} -298.15)/10} }{f_{H} \left(T_{v} \right)f_{L} \left(T_{v} \right)} \right]} \\ {f_{H} \left(T_{v} \right)=1+\exp \left[s_{1} \left(T_{v} -s_{2} \right)\right]} \\ {f_{L} \left(T_{v} \right)=1+\exp \left[s_{3} \left(s_{4} -T_{v} \right)\right]} \end{array} @@ -321,7 +323,7 @@ with :math:`Q_{10} =2`, Additionally, .. math:: - :label: 9.14 + :label: 9.13 R_{d} =R_{d25} \left\{\frac{Q_{10} ^{(T_{v} -298.15)/10} }{1+\exp \left[s_{5} \left(T_{v} -s_{6} \right)\right]} \right\} @@ -329,7 +331,7 @@ with :math:`Q_{10} =2`, :math:`s_{5} =1.3` K\ :sup:`-1` and :math:`s_{6} =328.15`\ K, and .. math:: - :label: 9.15 + :label: 9.14 k_{p} =k_{p25} \, Q_{10} ^{(T_{v} -298.15)/10} @@ -364,7 +366,7 @@ achieved by allowing :math:`\Delta S`\ to vary with growth temperature according to .. math:: - :label: 9.16 + :label: 9.15 \begin{array}{l} {\Delta S=668.39-1.07(T_{10} -T_{f} )\qquad \qquad {\rm for\; }V_{c\max } } \\ {\Delta S=659.70-0.75(T_{10} -T_{f} )\qquad \qquad {\rm for\; }J_{\max } } \end{array} @@ -374,7 +376,7 @@ Additionally, the ratio :math:`J_{\max 25} /V_{c\max 25}` at 25 :sup:`o`\ C decreases with growth temperature as .. math:: - :label: 9.17 + :label: 9.16 J_{\max 25} /V_{c\max 25} =2.59-0.035(T_{10} -T_{f} ). @@ -394,7 +396,7 @@ When LUNA is on, the :math:`V_{c\max 25}` for sun leaves is scaled to the shaded .. math:: - :label: 9.18 + :label: 9.17 \begin{array}{rcl} {V_{c\max 25 sha}} & {=} & {V_{c\max 25 sha} \frac{i_{v,sha}}{i_{v,sun}}} \\ @@ -404,7 +406,7 @@ When LUNA is on, the :math:`V_{c\max 25}` for sun leaves is scaled to the shaded Where :math:`i_{v,sun}` and :math:`i_{v,sha}` are the leaf-to-canopy scaling coefficients of the twostream radiation model, calculated as .. math:: - :label: 9.19 + :label: 9.18 i_{v,sun} = \frac{(1 - e^{-(k_{n,ext}+k_{b,ext})*lai_e)} / (k_{n,ext}+k_{b,ext})}{f_{sun}*lai_e}\\ i_{v,sha} = \frac{(1 - e^{-(k_{n,ext}+k_{b,ext})*lai_e)} / (k_{n,ext}+k_{b,ext})}{(1 - f_{sun})*lai_e} @@ -427,14 +429,14 @@ are calculated assuming there is negligible capacity to store CO\ :sub:`2` and water vapor at the leaf surface so that .. math:: - :label: 9.31 + :label: 9.19 A_{n} =\frac{c_{a} -c_{i} }{\left(1.4r_{b} +1.6r_{s} \right)P_{atm} } =\frac{c_{a} -c_{s} }{1.4r_{b} P_{atm} } =\frac{c_{s} -c_{i} }{1.6r_{s} P_{atm} } and the transpiration fluxes are related as .. math:: - :label: 9.32 + :label: 9.20 \frac{e_{a} -e_{i} }{r_{b} +r_{s} } =\frac{e_{a} -e_{s} }{r_{b} } =\frac{e_{s} -e_{i} }{r_{s} } @@ -444,21 +446,20 @@ terms 1.4 and 1.6 are the ratios of diffusivity of CO\ :sub:`2` to H\ :sub:`2`\ O for the leaf boundary layer resistance and stomatal resistance, :math:`c_{a} ={\rm CO}_{{\rm 2}} \left({\rm mol\; mol}^{{\rm -1}} \right)`, :math:`P_{atm}` -is the atmospheric CO\ :sub:`2` partial pressure (Pa) calculated -from CO\ :sub:`2` concentration (ppmv), :math:`e_{i}` is the +is the atmospheric pressure (Pa), :math:`e_{i}` is the saturation vapor pressure (Pa) evaluated at the leaf temperature :math:`T_{v}` , and :math:`e_{a}` is the vapor pressure of air (Pa). The vapor pressure of air in the plant canopy :math:`e_{a}` (Pa) is determined from .. math:: - :label: 9.33 + :label: 9.21 e_{a} =\frac{P_{atm} q_{s} }{0.622} where :math:`q_{s}` is the specific humidity of canopy air (kg kg\ :sup:`-1`, section :numref:`Sensible and Latent Heat Fluxes and Temperature for Vegetated Surfaces`). -Equations and are solved for +Equations :eq:`9.19` and :eq:`9.20` are solved for :math:`c_{s}` and :math:`e_{s}` .. math:: @@ -471,40 +472,51 @@ Equations and are solved for e_{s} =\frac{e_{a} r_{s} +e_{i} r_{b} }{r_{b} +r_{s} } -Substitution of equation :eq:`9.35` into equation :eq:`9.1` gives an expression for stomatal -resistance (:math:`r_{s}` ) as a function of photosynthesis -(:math:`A_{n}` ), given here in terms of conductance with -:math:`g_{s} =1/r_{s}` and :math:`g_{b} =1/r_{b}` +In terms of conductance with +:math:`g_{s} =1/r_{s}` and :math:`g_{b} =1/r_{b}` .. math:: :label: 9.36 - g_{s}^{2} + bg_{s} + c = 0 + e_{s} =\frac{e_{a} g_{b} +e_{i} g_{s} }{g_{b} +g_{s} } . -where + +Substitution of equation :eq:`9.36` into equation :eq:`9.1` gives an expression for the stomatal +resistance +(:math:`r_{s}`) as a function of photosynthesis +(:math:`A_{n}` ) .. math:: :label: 9.37 - b = 2(g_{o} * 10^{-6} + d) + \frac{(g_{1}d)^{2}}{g_{b}*10^{-6}D} + ag_{s}^{2} + bg_{s} + c = 0 - c = (g_{o}*10^{-6})^{2} + [2g_{o}*10^{-6} + d \frac{1-g_{1}^{2}} {D}]d +where + +.. math:: + :label: 9.38 + + \begin{array}{l} a = 1 \\ + + b = -[2(g_{o} * 10^{-6} + d) + \frac{(g_{1}d)^{2}}{g_{b}*10^{-6}D_{l}}] \\ + + c = (g_{o}*10^{-6})^{2} + [2g_{o}*10^{-6} + d (1-\frac{g_{1}^{2}} {D_{l}})]d \end{array} and .. math:: - :label: 9.38 + :label: 9.39 d = \frac {1.6 A_{n}} {c_{s} / P_{atm} * 10^{6}} - D = \frac {e_{i} - e_{a}} {1000} + D_{l} = \frac {max(e_{i} - e_{a},50)} {1000} Stomatal conductance, as solved by equation :eq:`9.36` (mol m :sup:`-2` s :sup:`-1`), is the larger of the two roots that satisfy the quadratic equation. Values for :math:`c_{i}` are given by .. math:: - :label: 9.39 + :label: 9.40 c_{i} =c_{a} -\left(1.4r_{b} +1.6r_{s} \right)P_{atm} A{}_{n}