-
Notifications
You must be signed in to change notification settings - Fork 318
/
SoilBiogeochemDecompCascadeBGCMod.F90
970 lines (843 loc) · 45.4 KB
/
SoilBiogeochemDecompCascadeBGCMod.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
module SoilBiogeochemDecompCascadeBGCMod
!-----------------------------------------------------------------------
! !DESCRIPTION:
! Sets the coeffiecients used in the decomposition cascade submodel.
! This uses the CENTURY/BGC parameters
!
! !USES:
use shr_kind_mod , only : r8 => shr_kind_r8
use shr_const_mod , only : SHR_CONST_TKFRZ
use shr_log_mod , only : errMsg => shr_log_errMsg
use clm_varpar , only : nlevsoi, nlevgrnd
use clm_varpar , only : nlevdecomp, ndecomp_cascade_transitions, ndecomp_pools, ndecomp_pools_max
use clm_varpar , only : i_litr_min, i_litr_max, i_met_lit, i_cwd
use clm_varctl , only : iulog, spinup_state, anoxia, use_lch4, use_vertsoilc, use_fates
use clm_varcon , only : zsoi
use decompMod , only : bounds_type
use spmdMod , only : masterproc
use abortutils , only : endrun
use CNSharedParamsMod , only : CNParamsShareInst, nlev_soildecomp_standard
use SoilBiogeochemDecompCascadeConType , only : decomp_cascade_con
use SoilBiogeochemStateType , only : soilbiogeochem_state_type
use SoilBiogeochemCarbonFluxType , only : soilbiogeochem_carbonflux_type
use SoilStateType , only : soilstate_type
use TemperatureType , only : temperature_type
use ch4Mod , only : ch4_type
use ColumnType , only : col
use GridcellType , only : grc
use SoilBiogeochemStateType , only : get_spinup_latitude_term
!
implicit none
private
!
! !PUBLIC MEMBER FUNCTIONS:
public :: readParams ! Read in parameters from params file
public :: init_decompcascade_bgc ! Initialization
public :: decomp_rate_constants_bgc ! Figure out decomposition rates
!
! !PUBLIC DATA MEMBERS
logical , public :: normalize_q10_to_century_tfunc = .true.! do we normalize the century decomp. rates so that they match the CLM Q10 at a given tep?
logical , public :: use_century_tfunc = .false.
real(r8), public :: normalization_tref = 15._r8 ! reference temperature for normalizaion (degrees C)
!
! !PRIVATE DATA MEMBERS
integer, private :: i_pro_som ! index of protected Soil Organic Matter (SOM)
integer, private :: i_rec_som ! index of recalcitrant SOM
integer, private :: i_avl_som ! index of available SOM
integer, private :: i_cel_lit ! index of cellulose litter pool
integer, private :: i_lig_lit ! index of lignin litter pool
type, private :: params_type
real(r8):: cn_s1_bgc !C:N for SOM 1
real(r8):: cn_s2_bgc !C:N for SOM 2
real(r8):: cn_s3_bgc !C:N for SOM 3
real(r8):: rf_l1s1_bgc !respiration fraction litter 1 -> SOM 1
real(r8):: rf_l2s1_bgc
real(r8):: rf_l3s2_bgc
real(r8):: rf_s2s1_bgc
real(r8):: rf_s2s3_bgc
real(r8):: rf_s3s1_bgc
real(r8):: rf_cwdl2_bgc
real(r8):: rf_cwdl3_bgc
real(r8):: tau_l1_bgc ! 1/turnover time of litter 1 from Century (l/18.5) (1/yr)
real(r8):: tau_l2_l3_bgc ! 1/turnover time of litter 2 and litter 3 from Century (1/4.9) (1/yr)
real(r8):: tau_s1_bgc ! 1/turnover time of SOM 1 from Century (1/7.3) (1/yr)
real(r8):: tau_s2_bgc ! 1/turnover time of SOM 2 from Century (1/0.2) (1/yr)
real(r8):: tau_s3_bgc ! 1/turnover time of SOM 3 from Century (1/0.0045) (1/yr)
real(r8):: tau_cwd_bgc ! corrected fragmentation rate constant CWD, century leaves wood decomposition rates open, within range of 0 - 0.5 yr^-1 (1/0.3) (1/yr)
real(r8) :: cwd_fcel_bgc !cellulose fraction for CWD
real(r8) :: cwd_flig
real(r8) :: minpsi_bgc !minimum soil water potential for heterotrophic resp
real(r8) :: maxpsi_bgc !maximum soil water potential for heterotrophic resp
real(r8), allocatable :: initial_Cstocks(:) ! Initial Carbon stocks for a cold-start
real(r8) :: initial_Cstocks_depth ! Soil depth for initial Carbon stocks for a cold-start
end type params_type
!
type(params_type), private :: params_inst
character(len=*), parameter, private :: sourcefile = &
__FILE__
!-----------------------------------------------------------------------
contains
!-----------------------------------------------------------------------
subroutine readParams ( ncid )
!
! !DESCRIPTION:
!
! !USES:
use ncdio_pio , only: file_desc_t,ncd_io
!
! !ARGUMENTS:
type(file_desc_t),intent(inout) :: ncid ! pio netCDF file id
!
! !LOCAL VARIABLES:
character(len=32) :: subname = 'CNDecompBgcParamsType'
character(len=100) :: errCode = 'Error reading in CN const file '
logical :: readv ! has variable been read in or not
real(r8) :: tempr ! temporary to read in constant
character(len=100) :: tString ! temp. var for reading
!-----------------------------------------------------------------------
! Read off of netcdf file
tString='tau_l1'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%tau_l1_bgc=tempr
tString='tau_l2_l3'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%tau_l2_l3_bgc=tempr
tString='tau_s1'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%tau_s1_bgc=tempr
tString='tau_s2'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%tau_s2_bgc=tempr
tString='tau_s3'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%tau_s3_bgc=tempr
tString='tau_cwd_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%tau_cwd_bgc=tempr
tString='cn_s1_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%cn_s1_bgc=tempr
tString='cn_s2_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%cn_s2_bgc=tempr
tString='cn_s3_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%cn_s3_bgc=tempr
tString='rf_l1s1_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%rf_l1s1_bgc=tempr
tString='rf_l2s1_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%rf_l2s1_bgc=tempr
tString='rf_l3s2_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%rf_l3s2_bgc=tempr
tString='rf_s2s1_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%rf_s2s1_bgc=tempr
tString='rf_s2s3_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%rf_s2s3_bgc=tempr
tString='rf_s3s1_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%rf_s3s1_bgc=tempr
tString='rf_cwdl2_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%rf_cwdl2_bgc=tempr
tString='rf_cwdl3_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%rf_cwdl3_bgc=tempr
tString='cwd_fcel'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%cwd_fcel_bgc=tempr
tString='minpsi_hr'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%minpsi_bgc=tempr
tString='maxpsi_hr'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%maxpsi_bgc=tempr
tString='cwd_flig'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%cwd_flig=tempr
allocate(params_inst%initial_Cstocks(ndecomp_pools_max))
tString='initial_Cstocks_bgc'
call ncd_io(trim(tString), params_inst%initial_Cstocks(:), 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
tString='initial_Cstocks_depth_bgc'
call ncd_io(trim(tString),tempr, 'read', ncid, readvar=readv)
if ( .not. readv ) call endrun(msg=trim(errCode)//trim(tString)//errMsg(sourcefile, __LINE__))
params_inst%initial_Cstocks_depth=tempr
end subroutine readParams
!-----------------------------------------------------------------------
subroutine init_decompcascade_bgc(bounds, soilbiogeochem_state_inst, soilstate_inst )
!
! !DESCRIPTION:
! initialize rate constants and decomposition pathways following the decomposition cascade of the BGC model.
! written by C. Koven
!
! !USES:
!
! !ARGUMENTS:
type(bounds_type) , intent(in) :: bounds
type(soilbiogeochem_state_type) , intent(inout) :: soilbiogeochem_state_inst
type(soilstate_type) , intent(in) :: soilstate_inst
!
! !LOCAL VARIABLES
!-- properties of each decomposing pool
real(r8) :: rf_l1s1
real(r8) :: rf_l2s1
real(r8) :: rf_l3s2
!real(r8) :: rf_s1s2(bounds%begc:bounds%endc,1:nlevdecomp)
!real(r8) :: rf_s1s3(bounds%begc:bounds%endc,1:nlevdecomp)
real(r8), allocatable :: rf_s1s2(:,:)
real(r8), allocatable :: rf_s1s3(:,:)
real(r8) :: rf_s2s1
real(r8) :: rf_s2s3
real(r8) :: rf_s3s1
real(r8) :: rf_cwdl2
real(r8) :: rf_cwdl3
real(r8) :: cwd_fcel
real(r8) :: cwd_flig
real(r8) :: cn_s1
real(r8) :: cn_s2
real(r8) :: cn_s3
!real(r8) :: f_s1s2(bounds%begc:bounds%endc,1:nlevdecomp)
!real(r8) :: f_s1s3(bounds%begc:bounds%endc,1:nlevdecomp)
real(r8), allocatable :: f_s1s2(:,:)
real(r8), allocatable :: f_s1s3(:,:)
real(r8) :: f_s2s1
real(r8) :: f_s2s3
integer :: i_l1s1
integer :: i_l2s1
integer :: i_l3s2
integer :: i_s1s2
integer :: i_s1s3
integer :: i_s2s1
integer :: i_s2s3
integer :: i_s3s1
integer :: i_cwdl2
integer :: i_cwdl3
real(r8):: speedup_fac ! acceleration factor, higher when vertsoilc = .true.
integer :: c, j ! indices
real(r8) :: t ! temporary variable
!-----------------------------------------------------------------------
associate( &
rf_decomp_cascade => soilbiogeochem_state_inst%rf_decomp_cascade_col , & ! Input: [real(r8) (:,:,:) ] respired fraction in decomposition step (frac)
pathfrac_decomp_cascade => soilbiogeochem_state_inst%pathfrac_decomp_cascade_col , & ! Input: [real(r8) (:,:,:) ] what fraction of C leaving a given pool passes through a given transition (frac)
cellsand => soilstate_inst%cellsand_col , & ! Input: [real(r8) (:,:) ] column 3D sand
cascade_donor_pool => decomp_cascade_con%cascade_donor_pool , & ! Output: [integer (:) ] which pool is C taken from for a given decomposition step
cascade_receiver_pool => decomp_cascade_con%cascade_receiver_pool , & ! Output: [integer (:) ] which pool is C added to for a given decomposition step
floating_cn_ratio_decomp_pools => decomp_cascade_con%floating_cn_ratio_decomp_pools , & ! Output: [logical (:) ] TRUE => pool has fixed C:N ratio
is_litter => decomp_cascade_con%is_litter , & ! Output: [logical (:) ] TRUE => pool is a litter pool
is_soil => decomp_cascade_con%is_soil , & ! Output: [logical (:) ] TRUE => pool is a soil pool
is_cwd => decomp_cascade_con%is_cwd , & ! Output: [logical (:) ] TRUE => pool is a cwd pool
initial_cn_ratio => decomp_cascade_con%initial_cn_ratio , & ! Output: [real(r8) (:) ] c:n ratio for initialization of pools
initial_stock => decomp_cascade_con%initial_stock , & ! Output: [real(r8) (:) ] initial concentration for seeding at spinup
initial_stock_soildepth => decomp_cascade_con%initial_stock_soildepth , & ! Output: [real(r8) (:) ] soil depth for initial concentration for seeding at spinup
is_metabolic => decomp_cascade_con%is_metabolic , & ! Output: [logical (:) ] TRUE => pool is metabolic material
is_cellulose => decomp_cascade_con%is_cellulose , & ! Output: [logical (:) ] TRUE => pool is cellulose
is_lignin => decomp_cascade_con%is_lignin , & ! Output: [logical (:) ] TRUE => pool is lignin
spinup_factor => decomp_cascade_con%spinup_factor & ! Output: [real(r8) (:) ] factor for AD spinup associated with each pool
)
allocate(rf_s1s2(bounds%begc:bounds%endc,1:nlevdecomp))
allocate(rf_s1s3(bounds%begc:bounds%endc,1:nlevdecomp))
allocate(f_s1s2(bounds%begc:bounds%endc,1:nlevdecomp))
allocate(f_s1s3(bounds%begc:bounds%endc,1:nlevdecomp))
!------- time-constant coefficients ---------- !
! set soil organic matter compartment C:N ratios
cn_s1 = params_inst%cn_s1_bgc
cn_s2 = params_inst%cn_s2_bgc
cn_s3 = params_inst%cn_s3_bgc
! set respiration fractions for fluxes between compartments
rf_l1s1 = params_inst%rf_l1s1_bgc
rf_l2s1 = params_inst%rf_l2s1_bgc
rf_l3s2 = params_inst%rf_l3s2_bgc
rf_s2s1 = params_inst%rf_s2s1_bgc
rf_s2s3 = params_inst%rf_s2s3_bgc
rf_s3s1 = params_inst%rf_s3s1_bgc
rf_cwdl2 = params_inst%rf_cwdl2_bgc
rf_cwdl3 = params_inst%rf_cwdl3_bgc
! set the cellulose and lignin fractions for coarse woody debris
cwd_fcel = params_inst%cwd_fcel_bgc
cwd_flig = params_inst%cwd_flig
! set path fractions
f_s2s1 = 0.42_r8/(0.45_r8)
f_s2s3 = 0.03_r8/(0.45_r8)
! some of these are dependent on the soil texture properties
do c = bounds%begc, bounds%endc
do j = 1, nlevdecomp
t = 0.85_r8 - 0.68_r8 * 0.01_r8 * (100._r8 - cellsand(c,j))
f_s1s2(c,j) = 1._r8 - .004_r8 / (1._r8 - t)
f_s1s3(c,j) = .004_r8 / (1._r8 - t)
rf_s1s2(c,j) = t
rf_s1s3(c,j) = t
end do
end do
initial_stock_soildepth = params_inst%initial_Cstocks_depth
!------------------- list of pools and their attributes ------------
i_litr_min = 1
i_met_lit = i_litr_min
floating_cn_ratio_decomp_pools(i_met_lit) = .true.
decomp_cascade_con%decomp_pool_name_restart(i_met_lit) = 'litr1'
decomp_cascade_con%decomp_pool_name_history(i_met_lit) = 'LITR1'
decomp_cascade_con%decomp_pool_name_long(i_met_lit) = 'litter 1'
decomp_cascade_con%decomp_pool_name_short(i_met_lit) = 'L1'
is_litter(i_met_lit) = .true.
is_soil(i_met_lit) = .false.
is_cwd(i_met_lit) = .false.
initial_cn_ratio(i_met_lit) = 90._r8
initial_stock(i_met_lit) = params_inst%initial_Cstocks(i_met_lit)
is_metabolic(i_met_lit) = .true.
is_cellulose(i_met_lit) = .false.
is_lignin(i_met_lit) = .false.
i_cel_lit = i_met_lit + 1
floating_cn_ratio_decomp_pools(i_cel_lit) = .true.
decomp_cascade_con%decomp_pool_name_restart(i_cel_lit) = 'litr2'
decomp_cascade_con%decomp_pool_name_history(i_cel_lit) = 'LITR2'
decomp_cascade_con%decomp_pool_name_long(i_cel_lit) = 'litter 2'
decomp_cascade_con%decomp_pool_name_short(i_cel_lit) = 'L2'
is_litter(i_cel_lit) = .true.
is_soil(i_cel_lit) = .false.
is_cwd(i_cel_lit) = .false.
initial_cn_ratio(i_cel_lit) = 90._r8
initial_stock(i_cel_lit) = params_inst%initial_Cstocks(i_cel_lit)
is_metabolic(i_cel_lit) = .false.
is_cellulose(i_cel_lit) = .true.
is_lignin(i_cel_lit) = .false.
i_lig_lit = i_cel_lit + 1
floating_cn_ratio_decomp_pools(i_lig_lit) = .true.
decomp_cascade_con%decomp_pool_name_restart(i_lig_lit) = 'litr3'
decomp_cascade_con%decomp_pool_name_history(i_lig_lit) = 'LITR3'
decomp_cascade_con%decomp_pool_name_long(i_lig_lit) = 'litter 3'
decomp_cascade_con%decomp_pool_name_short(i_lig_lit) = 'L3'
is_litter(i_lig_lit) = .true.
is_soil(i_lig_lit) = .false.
is_cwd(i_lig_lit) = .false.
initial_cn_ratio(i_lig_lit) = 90._r8
initial_stock(i_lig_lit) = params_inst%initial_Cstocks(i_lig_lit)
is_metabolic(i_lig_lit) = .false.
is_cellulose(i_lig_lit) = .false.
is_lignin(i_lig_lit) = .true.
i_litr_max = i_lig_lit
if (i_litr_min /= 1 .or. i_litr_max < 2 .or. i_litr_max > 3) then
write(iulog,*) 'Expecting i_litr_min = 1 and i_litr_max = 2 or 3.'
write(iulog,*) 'See pftconMod, SoilBiogeochemCarbonFluxType, and'
write(iulog,*) 'clmfates_interfaceMod for ramifications of changing'
write(iulog,*) 'this assumption.'
call endrun(msg='ERROR: i_litr_min and/or i_litr_max out of range '// &
errMsg(sourcefile, __LINE__))
end if
i_pro_som = i_lig_lit + 1
floating_cn_ratio_decomp_pools(i_pro_som) = .false.
decomp_cascade_con%decomp_pool_name_restart(i_pro_som) = 'soil1'
decomp_cascade_con%decomp_pool_name_history(i_pro_som) = 'SOIL1'
decomp_cascade_con%decomp_pool_name_long(i_pro_som) = 'soil 1'
decomp_cascade_con%decomp_pool_name_short(i_pro_som) = 'S1'
is_litter(i_pro_som) = .false.
is_soil(i_pro_som) = .true.
is_cwd(i_pro_som) = .false.
initial_cn_ratio(i_pro_som) = cn_s1
initial_stock(i_pro_som) = params_inst%initial_Cstocks(i_pro_som)
is_metabolic(i_pro_som) = .false.
is_cellulose(i_pro_som) = .false.
is_lignin(i_pro_som) = .false.
i_rec_som = i_pro_som + 1
floating_cn_ratio_decomp_pools(i_rec_som) = .false.
decomp_cascade_con%decomp_pool_name_restart(i_rec_som) = 'soil2'
decomp_cascade_con%decomp_pool_name_history(i_rec_som) = 'SOIL2'
decomp_cascade_con%decomp_pool_name_long(i_rec_som) = 'soil 2'
decomp_cascade_con%decomp_pool_name_short(i_rec_som) = 'S2'
is_litter(i_rec_som) = .false.
is_soil(i_rec_som) = .true.
is_cwd(i_rec_som) = .false.
initial_cn_ratio(i_rec_som) = cn_s2
initial_stock(i_rec_som) = params_inst%initial_Cstocks(i_rec_som)
is_metabolic(i_rec_som) = .false.
is_cellulose(i_rec_som) = .false.
is_lignin(i_rec_som) = .false.
i_avl_som = i_rec_som + 1
floating_cn_ratio_decomp_pools(i_avl_som) = .false.
decomp_cascade_con%decomp_pool_name_restart(i_avl_som) = 'soil3'
decomp_cascade_con%decomp_pool_name_history(i_avl_som) = 'SOIL3'
decomp_cascade_con%decomp_pool_name_long(i_avl_som) = 'soil 3'
decomp_cascade_con%decomp_pool_name_short(i_avl_som) = 'S3'
is_litter(i_avl_som) = .false.
is_soil(i_avl_som) = .true.
is_cwd(i_avl_som) = .false.
initial_cn_ratio(i_avl_som) = cn_s3
initial_stock(i_avl_som) = params_inst%initial_Cstocks(i_avl_som)
is_metabolic(i_avl_som) = .false.
is_cellulose(i_avl_som) = .false.
is_lignin(i_avl_som) = .false.
if (.not. use_fates) then
! CWD
i_cwd = i_avl_som + 1
floating_cn_ratio_decomp_pools(i_cwd) = .true.
decomp_cascade_con%decomp_pool_name_restart(i_cwd) = 'cwd'
decomp_cascade_con%decomp_pool_name_history(i_cwd) = 'CWD'
decomp_cascade_con%decomp_pool_name_long(i_cwd) = 'coarse woody debris'
decomp_cascade_con%decomp_pool_name_short(i_cwd) = 'CWD'
is_litter(i_cwd) = .false.
is_soil(i_cwd) = .false.
is_cwd(i_cwd) = .true.
initial_cn_ratio(i_cwd) = 90._r8
initial_stock(i_cwd) = params_inst%initial_Cstocks(i_cwd)
is_metabolic(i_cwd) = .false.
is_cellulose(i_cwd) = .false.
is_lignin(i_cwd) = .false.
endif
speedup_fac = 1._r8
!lit1
spinup_factor(i_met_lit) = 1._r8
!lit2,3
spinup_factor(i_cel_lit) = 1._r8
spinup_factor(i_lig_lit) = 1._r8
!CWD
if (.not. use_fates) then
spinup_factor(i_cwd) = max(1._r8, (speedup_fac * params_inst%tau_cwd_bgc / 2._r8 ))
end if
!som1
spinup_factor(i_pro_som) = 1._r8
!som2,3
spinup_factor(i_rec_som) = max(1._r8, (speedup_fac * params_inst%tau_s2_bgc))
spinup_factor(i_avl_som) = max(1._r8, (speedup_fac * params_inst%tau_s3_bgc))
if ( masterproc ) then
write(iulog,*) 'Spinup_state ',spinup_state
write(iulog,*) 'Spinup factors ',spinup_factor
end if
!---------------- list of transitions and their time-independent coefficients ---------------!
i_l1s1 = 1
decomp_cascade_con%cascade_step_name(i_l1s1) = 'L1S1'
rf_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_l1s1) = rf_l1s1
cascade_donor_pool(i_l1s1) = i_met_lit
cascade_receiver_pool(i_l1s1) = i_pro_som
pathfrac_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_l1s1) = 1.0_r8
i_l2s1 = 2
decomp_cascade_con%cascade_step_name(i_l2s1) = 'L2S1'
rf_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_l2s1) = rf_l2s1
cascade_donor_pool(i_l2s1) = i_cel_lit
cascade_receiver_pool(i_l2s1) = i_pro_som
pathfrac_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_l2s1)= 1.0_r8
i_l3s2 = 3
decomp_cascade_con%cascade_step_name(i_l3s2) = 'L3S2'
rf_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_l3s2) = rf_l3s2
cascade_donor_pool(i_l3s2) = i_lig_lit
cascade_receiver_pool(i_l3s2) = i_rec_som
pathfrac_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_l3s2) = 1.0_r8
i_s1s2 = 4
decomp_cascade_con%cascade_step_name(i_s1s2) = 'S1S2'
rf_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_s1s2) = rf_s1s2(bounds%begc:bounds%endc,1:nlevdecomp)
cascade_donor_pool(i_s1s2) = i_pro_som
cascade_receiver_pool(i_s1s2) = i_rec_som
pathfrac_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_s1s2) = f_s1s2(bounds%begc:bounds%endc,1:nlevdecomp)
i_s1s3 = 5
decomp_cascade_con%cascade_step_name(i_s1s3) = 'S1S3'
rf_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_s1s3) = rf_s1s3(bounds%begc:bounds%endc,1:nlevdecomp)
cascade_donor_pool(i_s1s3) = i_pro_som
cascade_receiver_pool(i_s1s3) = i_avl_som
pathfrac_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_s1s3) = f_s1s3(bounds%begc:bounds%endc,1:nlevdecomp)
i_s2s1 = 6
decomp_cascade_con%cascade_step_name(i_s2s1) = 'S2S1'
rf_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_s2s1) = rf_s2s1
cascade_donor_pool(i_s2s1) = i_rec_som
cascade_receiver_pool(i_s2s1) = i_pro_som
pathfrac_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_s2s1) = f_s2s1
i_s2s3 = 7
decomp_cascade_con%cascade_step_name(i_s2s3) = 'S2S3'
rf_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_s2s3) = rf_s2s3
cascade_donor_pool(i_s2s3) = i_rec_som
cascade_receiver_pool(i_s2s3) = i_avl_som
pathfrac_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_s2s3) = f_s2s3
i_s3s1 = 8
decomp_cascade_con%cascade_step_name(i_s3s1) = 'S3S1'
rf_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_s3s1) = rf_s3s1
cascade_donor_pool(i_s3s1) = i_avl_som
cascade_receiver_pool(i_s3s1) = i_pro_som
pathfrac_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_s3s1) = 1.0_r8
if (.not. use_fates) then
i_cwdl2 = 9
decomp_cascade_con%cascade_step_name(i_cwdl2) = 'CWDL2'
rf_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_cwdl2) = rf_cwdl2
cascade_donor_pool(i_cwdl2) = i_cwd
cascade_receiver_pool(i_cwdl2) = i_cel_lit
pathfrac_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_cwdl2) = cwd_fcel
i_cwdl3 = 10
decomp_cascade_con%cascade_step_name(i_cwdl3) = 'CWDL3'
rf_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_cwdl3) = rf_cwdl3
cascade_donor_pool(i_cwdl3) = i_cwd
cascade_receiver_pool(i_cwdl3) = i_lig_lit
pathfrac_decomp_cascade(bounds%begc:bounds%endc,1:nlevdecomp,i_cwdl3) = cwd_flig
end if
deallocate(rf_s1s2)
deallocate(rf_s1s3)
deallocate(f_s1s2)
deallocate(f_s1s3)
deallocate(params_inst%initial_Cstocks)
end associate
end subroutine init_decompcascade_bgc
!-----------------------------------------------------------------------
subroutine decomp_rate_constants_bgc(bounds, num_soilc, filter_soilc, &
soilstate_inst, temperature_inst, ch4_inst, soilbiogeochem_carbonflux_inst)
!
! !DESCRIPTION:
! calculate rate constants and decomposition pathways for the CENTURY decomposition cascade model
! written by C. Koven based on original CLM4 decomposition cascade
!
! !USES:
use clm_time_manager , only : get_days_per_year
use shr_const_mod , only : SHR_CONST_PI
use clm_varcon , only : secspday
!
! !ARGUMENTS:
type(bounds_type) , intent(in) :: bounds
integer , intent(in) :: num_soilc ! number of soil columns in filter
integer , intent(in) :: filter_soilc(:) ! filter for soil columns
type(soilstate_type) , intent(in) :: soilstate_inst
type(temperature_type) , intent(in) :: temperature_inst
type(ch4_type) , intent(in) :: ch4_inst
type(soilbiogeochem_carbonflux_type) , intent(inout) :: soilbiogeochem_carbonflux_inst
!
! !LOCAL VARIABLES:
real(r8):: frw(bounds%begc:bounds%endc) ! rooting fraction weight
real(r8), allocatable:: fr(:,:) ! column-level rooting fraction by soil depth
real(r8):: psi ! temporary soilpsi for water scalar
real(r8):: rate_scalar ! combined rate scalar for decomp
real(r8):: k_l1 ! decomposition rate constant litter 1 (1/sec)
real(r8):: k_l2_l3 ! decomposition rate constant litter 2 and litter 3 (1/sec)
real(r8):: k_s1 ! decomposition rate constant SOM 1 (1/sec)
real(r8):: k_s2 ! decomposition rate constant SOM 2 (1/sec)
real(r8):: k_s3 ! decomposition rate constant SOM 3 (1/sec)
real(r8):: k_frag ! fragmentation rate constant CWD (1/sec)
real(r8):: cwdc_loss ! fragmentation rate for CWD carbon (gC/m2/s)
real(r8):: cwdn_loss ! fragmentation rate for CWD nitrogen (gN/m2/s)
real(r8):: Q10 ! temperature dependence
real(r8):: froz_q10 ! separate q10 for frozen soil respiration rates. default to same as above zero rates
real(r8):: decomp_depth_efolding ! (meters) e-folding depth for reduction in decomposition [
integer :: c, fc, j, k, l
real(r8):: catanf ! hyperbolic temperature function from CENTURY
real(r8):: catanf_30 ! reference rate at 30C
real(r8):: t1 ! temperature argument
real(r8):: normalization_factor ! factor by which to offset the decomposition rates frm century to a q10 formulation
real(r8):: days_per_year ! days per year
real(r8):: depth_scalar(bounds%begc:bounds%endc,1:nlevdecomp)
real(r8):: mino2lim !minimum anaerobic decomposition rate
real(r8):: spinup_geogterm_l1(bounds%begc:bounds%endc) ! geographically-varying spinup term for l1
real(r8):: spinup_geogterm_l23(bounds%begc:bounds%endc) ! geographically-varying spinup term for l2 and l3
real(r8):: spinup_geogterm_cwd(bounds%begc:bounds%endc) ! geographically-varying spinup term for cwd
real(r8):: spinup_geogterm_s1(bounds%begc:bounds%endc) ! geographically-varying spinup term for s1
real(r8):: spinup_geogterm_s2(bounds%begc:bounds%endc) ! geographically-varying spinup term for s2
real(r8):: spinup_geogterm_s3(bounds%begc:bounds%endc) ! geographically-varying spinup term for s3
!-----------------------------------------------------------------------
!----- CENTURY T response function
catanf(t1) = 11.75_r8 +(29.7_r8 / SHR_CONST_PI) * atan( SHR_CONST_PI * 0.031_r8 * ( t1 - 15.4_r8 ))
associate( &
minpsi => params_inst%minpsi_bgc , & ! Input: [real(r8) ] minimum soil suction (mm)
maxpsi => params_inst%maxpsi_bgc , & ! Input: [real(r8) ] maximum soil suction (mm)
soilpsi => soilstate_inst%soilpsi_col , & ! Input: [real(r8) (:,:) ] soil water potential in each soil layer (MPa)
t_soisno => temperature_inst%t_soisno_col , & ! Input: [real(r8) (:,:) ] soil temperature (Kelvin) (-nlevsno+1:nlevgrnd)
o2stress_sat => ch4_inst%o2stress_sat_col , & ! Input: [real(r8) (:,:) ] Ratio of oxygen available to that demanded by roots, aerobes, & methanotrophs (nlevsoi)
o2stress_unsat => ch4_inst%o2stress_unsat_col , & ! Input: [real(r8) (:,:) ] Ratio of oxygen available to that demanded by roots, aerobes, & methanotrophs (nlevsoi)
finundated => ch4_inst%finundated_col , & ! Input: [real(r8) (:) ] fractional inundated area
t_scalar => soilbiogeochem_carbonflux_inst%t_scalar_col , & ! Output: [real(r8) (:,:) ] soil temperature scalar for decomp
w_scalar => soilbiogeochem_carbonflux_inst%w_scalar_col , & ! Output: [real(r8) (:,:) ] soil water scalar for decomp
o_scalar => soilbiogeochem_carbonflux_inst%o_scalar_col , & ! Output: [real(r8) (:,:) ] fraction by which decomposition is limited by anoxia
decomp_k => soilbiogeochem_carbonflux_inst%decomp_k_col , & ! Output: [real(r8) (:,:,:) ] rate constant for decomposition (1./sec)
spinup_factor => decomp_cascade_con%spinup_factor & ! Input: [real(r8) (:) ] factor for AD spinup associated with each pool
)
mino2lim = CNParamsShareInst%mino2lim
if ( use_century_tfunc .and. normalize_q10_to_century_tfunc ) then
call endrun(msg='ERROR: cannot have both use_century_tfunc and normalize_q10_to_century_tfunc set as true'//&
errMsg(sourcefile, __LINE__))
endif
days_per_year = get_days_per_year()
! set "Q10" parameter
Q10 = CNParamsShareInst%Q10
! set "froz_q10" parameter
froz_q10 = CNParamsShareInst%froz_q10
! Set "decomp_depth_efolding" parameter
decomp_depth_efolding = CNParamsShareInst%decomp_depth_efolding
! translate to per-second time constant
k_l1 = 1._r8 / (secspday * days_per_year * params_inst%tau_l1_bgc)
k_l2_l3 = 1._r8 / (secspday * days_per_year * params_inst%tau_l2_l3_bgc)
k_s1 = 1._r8 / (secspday * days_per_year * params_inst%tau_s1_bgc)
k_s2 = 1._r8 / (secspday * days_per_year * params_inst%tau_s2_bgc)
k_s3 = 1._r8 / (secspday * days_per_year * params_inst%tau_s3_bgc)
k_frag = 1._r8 / (secspday * days_per_year * params_inst%tau_cwd_bgc)
! calc ref rate
catanf_30 = catanf(30._r8)
if ( spinup_state >= 1 ) then
do fc = 1,num_soilc
c = filter_soilc(fc)
!
if ( abs(spinup_factor(i_met_lit) - 1._r8) .gt. .000001_r8) then
spinup_geogterm_l1(c) = spinup_factor(i_met_lit) * get_spinup_latitude_term(grc%latdeg(col%gridcell(c)))
else
spinup_geogterm_l1(c) = 1._r8
endif
!
if ( abs(spinup_factor(i_cel_lit) - 1._r8) .gt. .000001_r8) then
spinup_geogterm_l23(c) = spinup_factor(i_cel_lit) * get_spinup_latitude_term(grc%latdeg(col%gridcell(c)))
else
spinup_geogterm_l23(c) = 1._r8
endif
!
if ( .not. use_fates ) then
if ( abs(spinup_factor(i_cwd) - 1._r8) .gt. .000001_r8) then
spinup_geogterm_cwd(c) = spinup_factor(i_cwd) * get_spinup_latitude_term(grc%latdeg(col%gridcell(c)))
else
spinup_geogterm_cwd(c) = 1._r8
endif
endif
!
if ( abs(spinup_factor(i_pro_som) - 1._r8) .gt. .000001_r8) then
spinup_geogterm_s1(c) = spinup_factor(i_pro_som) * get_spinup_latitude_term(grc%latdeg(col%gridcell(c)))
else
spinup_geogterm_s1(c) = 1._r8
endif
!
if ( abs(spinup_factor(i_rec_som) - 1._r8) .gt. .000001_r8) then
spinup_geogterm_s2(c) = spinup_factor(i_rec_som) * get_spinup_latitude_term(grc%latdeg(col%gridcell(c)))
else
spinup_geogterm_s2(c) = 1._r8
endif
!
if ( abs(spinup_factor(i_avl_som) - 1._r8) .gt. .000001_r8) then
spinup_geogterm_s3(c) = spinup_factor(i_avl_som) * get_spinup_latitude_term(grc%latdeg(col%gridcell(c)))
else
spinup_geogterm_s3(c) = 1._r8
endif
!
end do
else
do fc = 1,num_soilc
c = filter_soilc(fc)
spinup_geogterm_l1(c) = 1._r8
spinup_geogterm_l23(c) = 1._r8
spinup_geogterm_cwd(c) = 1._r8
spinup_geogterm_s1(c) = 1._r8
spinup_geogterm_s2(c) = 1._r8
spinup_geogterm_s3(c) = 1._r8
end do
endif
!--- time dependent coefficients-----!
if ( nlevdecomp .eq. 1 ) then
! calculate function to weight the temperature and water potential scalars
! for decomposition control.
! the following normalizes values in fr so that they
! sum to 1.0 across top nlevdecomp levels on a column
frw(bounds%begc:bounds%endc) = 0._r8
nlev_soildecomp_standard=5
allocate(fr(bounds%begc:bounds%endc,nlev_soildecomp_standard))
do j=1,nlev_soildecomp_standard
do fc = 1,num_soilc
c = filter_soilc(fc)
frw(c) = frw(c) + col%dz(c,j)
end do
end do
do j = 1,nlev_soildecomp_standard
do fc = 1,num_soilc
c = filter_soilc(fc)
if (frw(c) /= 0._r8) then
fr(c,j) = col%dz(c,j) / frw(c)
else
fr(c,j) = 0._r8
end if
end do
end do
if ( .not. use_century_tfunc ) then
! calculate rate constant scalar for soil temperature
! assuming that the base rate constants are assigned for non-moisture
! limiting conditions at 25 C.
do j = 1,nlev_soildecomp_standard
do fc = 1,num_soilc
c = filter_soilc(fc)
if (j==1) t_scalar(c,:) = 0._r8
if (t_soisno(c,j) >= SHR_CONST_TKFRZ) then
t_scalar(c,1)=t_scalar(c,1) + &
(Q10**((t_soisno(c,j)-(SHR_CONST_TKFRZ+25._r8))/10._r8))*fr(c,j)
else
t_scalar(c,1)=t_scalar(c,1) + &
(Q10**(-25._r8/10._r8))*(froz_q10**((t_soisno(c,j)-SHR_CONST_TKFRZ)/10._r8))*fr(c,j)
endif
end do
end do
else
! original century uses an arctangent function to calculate the temperature dependence of decomposition
do j = 1,nlev_soildecomp_standard
do fc = 1,num_soilc
c = filter_soilc(fc)
if (j==1) t_scalar(c,:) = 0._r8
t_scalar(c,1)=t_scalar(c,1) +max(catanf(t_soisno(c,j)-SHR_CONST_TKFRZ)/catanf_30*fr(c,j),0.01_r8)
end do
end do
endif
! calculate the rate constant scalar for soil water content.
! Uses the log relationship with water potential given in
! Andren, O., and K. Paustian, 1987. Barley straw decomposition in the field:
! a comparison of models. Ecology, 68(5):1190-1200.
! and supported by data in
! Orchard, V.A., and F.J. Cook, 1983. Relationship between soil respiration
! and soil moisture. Soil Biol. Biochem., 15(4):447-453.
do j = 1,nlev_soildecomp_standard
do fc = 1,num_soilc
c = filter_soilc(fc)
if (j==1) w_scalar(c,:) = 0._r8
psi = min(soilpsi(c,j),maxpsi)
! decomp only if soilpsi is higher than minpsi
if (psi > minpsi) then
w_scalar(c,1) = w_scalar(c,1) + (log(minpsi/psi)/log(minpsi/maxpsi))*fr(c,j)
end if
end do
end do
if (use_lch4) then
! Calculate ANOXIA
if (anoxia) then
! Check for anoxia w/o LCH4 now done in controlMod.
do j = 1,nlev_soildecomp_standard
do fc = 1,num_soilc
c = filter_soilc(fc)
if (j==1) o_scalar(c,:) = 0._r8
o_scalar(c,1) = o_scalar(c,1) + fr(c,j) * max(o2stress_unsat(c,j), mino2lim)
end do
end do
else
o_scalar(bounds%begc:bounds%endc,1:nlevdecomp) = 1._r8
end if
else
o_scalar(bounds%begc:bounds%endc,1:nlevdecomp) = 1._r8
end if
deallocate(fr)
else
if ( .not. use_century_tfunc ) then
! calculate rate constant scalar for soil temperature
! assuming that the base rate constants are assigned for non-moisture
! limiting conditions at 25 C.
! Peter Thornton: 3/13/09
! Replaced the Lloyd and Taylor function with a Q10 formula, with Q10 = 1.5
! as part of the modifications made to improve the seasonal cycle of
! atmospheric CO2 concentration in global simulations. This does not impact
! the base rates at 25 C, which are calibrated from microcosm studies.
do j = 1, nlevdecomp
do fc = 1,num_soilc
c = filter_soilc(fc)
if (t_soisno(c,j) >= SHR_CONST_TKFRZ) then
t_scalar(c,j)= (Q10**((t_soisno(c,j)-(SHR_CONST_TKFRZ+25._r8))/10._r8))
else
t_scalar(c,j)= (Q10**(-25._r8/10._r8))*(froz_q10**((t_soisno(c,j)-SHR_CONST_TKFRZ)/10._r8))
endif
end do
end do
else
do j = 1, nlevdecomp
do fc = 1,num_soilc
c = filter_soilc(fc)
t_scalar(c,j)= max(catanf(t_soisno(c,j)-SHR_CONST_TKFRZ)/catanf_30, 0.01_r8)
end do
end do
endif
! calculate the rate constant scalar for soil water content.
! Uses the log relationship with water potential given in
! Andren, O., and K. Paustian, 1987. Barley straw decomposition in the field:
! a comparison of models. Ecology, 68(5):1190-1200.
! and supported by data in
! Orchard, V.A., and F.J. Cook, 1983. Relationship between soil respiration
! and soil moisture. Soil Biol. Biochem., 15(4):447-453.
do j = 1,nlevdecomp
do fc = 1,num_soilc
c = filter_soilc(fc)
psi = min(soilpsi(c,j),maxpsi)
! decomp only if soilpsi is higher than minpsi
if (psi > minpsi) then
w_scalar(c,j) = (log(minpsi/psi)/log(minpsi/maxpsi))
else
w_scalar(c,j) = 0._r8
end if
end do
end do
if (use_lch4) then
! Calculate ANOXIA
! Check for anoxia w/o LCH4 now done in controlMod.
if (anoxia) then
do j = 1,nlevdecomp
do fc = 1,num_soilc
c = filter_soilc(fc)
o_scalar(c,j) = max(o2stress_unsat(c,j), mino2lim)
end do
end do
else
o_scalar(bounds%begc:bounds%endc,1:nlevdecomp) = 1._r8
end if
else
o_scalar(bounds%begc:bounds%endc,1:nlevdecomp) = 1._r8
end if
end if
if ( normalize_q10_to_century_tfunc ) then
! scale all decomposition rates by a constant to compensate for offset between original CENTURY temp func and Q10
normalization_factor = (catanf(normalization_tref)/catanf_30) / (q10**((normalization_tref-25._r8)/10._r8))
do j = 1, nlevdecomp
do fc = 1,num_soilc
c = filter_soilc(fc)
t_scalar(c,j) = t_scalar(c,j) * normalization_factor
end do
end do
endif
! add a term to reduce decomposition rate at depth
! for now used a fixed e-folding depth
do j = 1, nlevdecomp
do fc = 1, num_soilc
c = filter_soilc(fc)
if (use_vertsoilc) then
depth_scalar(c,j) = exp(-zsoi(j) / decomp_depth_efolding)
else
depth_scalar(c,j) = 1.0_r8
end if
end do
end do
! calculate rate constants for all litter and som pools
do j = 1,nlevdecomp
do fc = 1,num_soilc
c = filter_soilc(fc)
decomp_k(c,j,i_met_lit) = k_l1 * t_scalar(c,j) * w_scalar(c,j) * &
depth_scalar(c,j) * o_scalar(c,j) * spinup_geogterm_l1(c)
decomp_k(c,j,i_cel_lit) = k_l2_l3 * t_scalar(c,j) * w_scalar(c,j) * &
depth_scalar(c,j) * o_scalar(c,j) * spinup_geogterm_l23(c)
decomp_k(c,j,i_lig_lit) = k_l2_l3 * t_scalar(c,j) * w_scalar(c,j) * &
depth_scalar(c,j) * o_scalar(c,j) * spinup_geogterm_l23(c)
decomp_k(c,j,i_pro_som) = k_s1 * t_scalar(c,j) * w_scalar(c,j) * &
depth_scalar(c,j) * o_scalar(c,j) * spinup_geogterm_s1(c)
decomp_k(c,j,i_rec_som) = k_s2 * t_scalar(c,j) * w_scalar(c,j) * &
depth_scalar(c,j) * o_scalar(c,j) * spinup_geogterm_s2(c)
decomp_k(c,j,i_avl_som) = k_s3 * t_scalar(c,j) * w_scalar(c,j) * &
depth_scalar(c,j) * o_scalar(c,j) * spinup_geogterm_s3(c)
! same for cwd but only if fates is not enabled; fates handles CWD
! on its own structure
if (.not. use_fates) then
decomp_k(c,j,i_cwd) = k_frag * t_scalar(c,j) * w_scalar(c,j) * &
depth_scalar(c,j) * o_scalar(c,j) * spinup_geogterm_cwd(c)
end if
end do
end do
end associate
end subroutine decomp_rate_constants_bgc
end module SoilBiogeochemDecompCascadeBGCMod