-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHRGCN_heterophily.py
350 lines (291 loc) · 14.6 KB
/
HRGCN_heterophily.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 27 09:09:19 2022
@author: daishi
"""
import numpy as np
from numpy.linalg import matrix_rank
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import networkx as nx
#from GraphRicciCurvature.Xfeature import OllivierRicci
#from GraphRicciCurvature.My_OllivierRicci import OllivierRicci
from GraphRicciCurvature.OllivierRicci import OllivierRicci
from GraphRicciCurvature.FormanRicci import FormanRicci
from torch_geometric.datasets import Planetoid
from torch_geometric.datasets import Planetoid, WebKB, Actor, WikipediaNetwork, Amazon, Coauthor, CoraFull
from torch_geometric.datasets import Coauthor
from torch_geometric.datasets import Amazon
from torch_geometric.utils import get_laplacian, to_networkx
import argparse
import os.path as osp
import time
import scipy
import scipy.sparse as sp
from scipy.spatial import distance
import torch.optim as optim
from layers import GraphConvolution
import torch_geometric.transforms as T
from torch.optim import Adam, lr_scheduler
from ogb.nodeproppred import PygNodePropPredDataset, Evaluator
def normalize_adj(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv_sqrt = np.power(rowsum, -0.5).flatten()
r_inv_sqrt[np.isinf(r_inv_sqrt)] = 0.
r_mat_inv_sqrt = sp.diags(r_inv_sqrt)
return mx.dot(r_mat_inv_sqrt).transpose().dot(r_mat_inv_sqrt)
def normalize_features(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
def generate_split(data, num_classes, seed=2021, train_num_per_c=20, val_num_per_c=30):
np.random.seed(seed)
train_mask = torch.zeros(data.y.size(0), dtype=torch.bool)
val_mask = torch.zeros(data.y.size(0), dtype=torch.bool)
test_mask = torch.zeros(data.y.size(0), dtype=torch.bool)
for c in range(num_classes):
all_c_idx = (data.y == c).nonzero()
if all_c_idx.size(0) <= train_num_per_c + val_num_per_c:
test_mask[all_c_idx] = True
continue
perm = np.random.permutation(all_c_idx.size(0))
c_train_idx = all_c_idx[perm[:train_num_per_c]]
train_mask[c_train_idx] = True
test_mask[c_train_idx] = True
c_val_idx = all_c_idx[perm[train_num_per_c : train_num_per_c + val_num_per_c]]
val_mask[c_val_idx] = True
test_mask[c_val_idx] = True
test_mask = ~test_mask
return train_mask, val_mask, test_mask
#%% models
class GCN(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout, scale):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
self.scale = scale
def forward(self, x, adj):
#x = F.rrelu(self.gc1(x, adj),upper=self.scale,lower =self.scale)
x = F.leaky_relu(self.gc1(x, adj),negative_slope=self.scale)
#x= F.relu(self.gc1(x,adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc2(x, adj)
return F.log_softmax(x,dim=1)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-f')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--dataset', type=str, default='wisconsin', # for chameleon bigger dataset, we must assign bigger nhid i.e.32
help='name of dataset (default: Cora): Cora, Citeseer, Pubmed,Coauthor Physics Coauthor CS Amazon Computer Amazon Photo')
parser.add_argument('--reps', type=int, default=12,
help='number of repetitions (default: 10)')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train (default: 200)')
parser.add_argument('--lr', type=float, default=0.05,
help='learning rate (default: 5e-3)')
parser.add_argument('--wd', type=float, default=1e-5,
help='weight decay (default: 5e-4)')
parser.add_argument('--nhid', type=int, default=16,
help='number of hidden units (default: 16)')
parser.add_argument('--dropout', type=float, default=0.95,
help='dropout probability (default: 0.7)')
parser.add_argument('--Ollivier_alpha', type = float, default = 0.4,
help='Ollivier_alpha value in Ollivier-Ricci Curvature (default: 0.7)')
parser.add_argument('--noiseLev', type=float, default=0,
help='Added noise level (default: 0.05 for 5% noise)')
parser.add_argument('--seed', type=int, default=0,
help='random seed (default: 1000)')
parser.add_argument('--ExpNum', type=int, default='1',
help='The Experiment Number (default: 1)')
parser.add_argument('--iteration_number', type=int, default=300,
help='number of iterations in the ricci flow evolution, based on the paper is ranged from 20-50')
parser.add_argument('--CurvatureType', type=str, default='Ollivier',
help='Ricci curvature type: Ollivier (default) or Forman or None')
parser.add_argument('--num_nbr', type=int, default=12000,
help='k edge weight neighbors for density distribution,Smaller k run faster but the result is less accurate. (Default value = 3000)')
parser.add_argument('--scale', type=float, default=0.1, help='upper and lower limit for the scaling value of the negative polyhedra reconstruction')
parser.add_argument('--gamma', type=float, default=1, help='gamma for the similiarty measure function')
parser.add_argument('--train_rate',
type=float,
default=0.6,
help='Training rate.')
parser.add_argument('--val_rate',
type=float,
default=0.2)
args = parser.parse_args()
print(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
args.cuda = not args.no_cuda and torch.cuda.is_available()
# Training on CPU/GPU device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
print(torch.cuda.device_count())
#%%
start_time = time.time()
dataname = args.dataset
rootname = osp.join(osp.abspath(''), 'data', dataname)
########## load heterophily dataset
dataset = WebKB(rootname, dataname)
#dataset = Actor(rootname)
#dataset = WikipediaNetwork(rootname, dataname)
num_features = dataset.num_features
num_classes = dataset.num_classes
data = dataset[0]
num_nodes = data.x.shape[0]
rand_seed = args.seed
num_train = int(len(data.y) / num_classes * args.train_rate)
num_val = int(len(data.y) / num_classes * args.val_rate)
data.train_mask, data.val_mask, data.test_mask = generate_split(data, num_classes, rand_seed, num_train, num_val)
features = data.x
features = normalize_features(features) ##################
G = to_networkx(data, to_undirected=False)
orc = OllivierRicci(G, alpha=args.Ollivier_alpha, verbose="INFO",shortest_path="all_pairs", nbr_topk=args.num_nbr,exp_power=1) # should use 1 here since in the Olliviier compuation, we want to assign samilarity measure.
orc.compute_ricci_curvature()
G_orc = orc.G.copy()
rc = np.array(list(nx.get_edge_attributes(G_orc, 'ricciCurvature').values()))
adj = np.zeros((num_nodes, num_nodes))
for n1, n2 in G_orc.edges(): # re-define the ricci curature as k/dij or k*dij to preserve the sign
#adj[n1, n2] = np.exp(-(orc.G[n1][n2]["ricciCurvature"])*(distance.euclidean(features[n1], features[n2])+np.random.uniform(0.1, 10**(-20))/10000))
adj[n1, n2] = np.exp(-(orc.G[n1][n2]["ricciCurvature"])/(distance.euclidean(features[n1], features[n2])+np.random.uniform(0.1, 10**(-20))/10000))
adj[n2, n1] = adj[n1, n2]
from numpy import inf
adj[adj == inf] = np.exp(100)
adj = sp.coo_matrix(adj)
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
adj = normalize_adj(adj + sp.eye(adj.shape[0]))
#adj = normalize_adj(adj)
#adj = adj + sp.eye(adj.shape[0])
adj= torch.FloatTensor(np.array(adj.todense()))
features = normalize_features(features)
features = torch.FloatTensor(np.array(features))
labels = data.y
data = data.to(device)
#%%
'''training'''
if args.cuda:
features = features.cuda()
adj = adj.cuda()
#adj_2=adj_2.cuda()
labels = labels.cuda()
for i in range(10):
# create result matrices
num_epochs = args.epochs
num_reps = args.reps
epoch_loss = dict()
epoch_acc = dict()
epoch_loss['train_mask'] = np.zeros((num_reps, num_epochs))
epoch_acc['train_mask'] = np.zeros((num_reps, num_epochs))
epoch_loss['val_mask'] = np.zeros((num_reps, num_epochs))
epoch_acc['val_mask'] = np.zeros((num_reps, num_epochs))
epoch_loss['test_mask'] = np.zeros((num_reps, num_epochs))
epoch_acc['test_mask'] = np.zeros((num_reps, num_epochs))
saved_model_val_acc = np.zeros(num_reps)
saved_model_test_acc = np.zeros(num_reps)
SaveResultFilename = args.dataset + 'Exp{0:03d}'.format(args.ExpNum)
ResultCSV = args.dataset + 'RF_GCN_Lin.csv'
epoch_loss = dict()
epoch_acc = dict()
epoch_loss['train_mask'] = np.zeros((num_reps, num_epochs))
epoch_acc['train_mask'] = np.zeros((num_reps, num_epochs))
epoch_loss['val_mask'] = np.zeros((num_reps, num_epochs))
epoch_acc['val_mask'] = np.zeros((num_reps, num_epochs))
epoch_loss['test_mask'] = np.zeros((num_reps, num_epochs))
epoch_acc['test_mask'] = np.zeros((num_reps, num_epochs))
saved_model_val_acc = np.zeros(num_reps)
saved_model_test_acc = np.zeros(num_reps)
for rep in range(num_reps):
print('****** Rep {}: training start ******'.format(rep + 1))
max_acc = 0.0
record_test_acc = 0.0
model = GCN(nfeat=features.shape[1],
nhid=args.nhid,
nclass=labels.max().item() + 1,
dropout=args.dropout,scale=0.5).to(device)
optimizer = optim.Adam(model.parameters(),
lr=args.lr, weight_decay=args.wd)
#0.5 ==》0.8259
# training
for epoch in range(num_epochs):
# training mode
t = time.time()
model.train()
optimizer.zero_grad()
#torch.set_default_tensor_type(torch.DoubleTensor)
output = model(features, adj)
#output = model(data,adj)
loss_train = F.nll_loss(output[data.train_mask], data.y[data.train_mask])
loss_train.backward()
optimizer.step()
# evaluation mode
model.eval()
output = model(features, adj)
for i, mask in data('train_mask', 'val_mask', 'test_mask'):
pred = output[mask].max(dim=1)[1]
correct = float(pred.eq(data.y[mask]).sum().item())
e_acc = correct / mask.sum().item()
epoch_acc[i][rep, epoch] = e_acc
e_loss = F.nll_loss(output[mask], data.y[mask])
epoch_loss[i][rep, epoch] = e_loss
# print out results
if (epoch + 1) % 2 == 0:
print('Epoch: {:3d}'.format(epoch + 1),
'train_loss: {:.4f}'.format(epoch_loss['train_mask'][rep, epoch]),
'train_acc: {:.4f}'.format(epoch_acc['train_mask'][rep, epoch]),
'val_loss: {:.4f}'.format(epoch_loss['val_mask'][rep, epoch]),
'val_acc: {:.4f}'.format(epoch_acc['val_mask'][rep, epoch]),
'test_loss: {:.4f}'.format(epoch_loss['test_mask'][rep, epoch]),
'test_acc: {:.4f}'.format(epoch_acc['test_mask'][rep, epoch]))
# save model We dont need this on HPC
if epoch > 10:
if epoch_acc['val_mask'][rep, epoch] > max_acc:
#torch.save(model.state_dict(), SaveResultFilename + '.pth')
# print('Epoch: {:3d}'.format(epoch + 1),
# 'train_loss: {:.4f}'.format(epoch_loss['train_mask'][rep, epoch]),
# 'train_acc: {:.4f}'.format(epoch_acc['train_mask'][rep, epoch]),
# 'val_loss: {:.4f}'.format(epoch_loss['val_mask'][rep, epoch]),
# 'val_acc: {:.4f}'.format(epoch_acc['val_mask'][rep, epoch]),
# 'test_loss: {:.4f}'.format(epoch_loss['test_mask'][rep, epoch]),
# 'test_acc: {:.4f}'.format(epoch_acc['test_mask'][rep, epoch]))
print('=== Model saved at epoch: {:3d}'.format(epoch + 1))
max_acc = epoch_acc['val_mask'][rep, epoch]
record_test_acc = epoch_acc['test_mask'][rep, epoch]
saved_model_val_acc[rep] = max_acc
saved_model_test_acc[rep] = record_test_acc
print('#### Rep {0:2d} Finished! val acc: {1:.4f}, test acc: {2:.4f} ####\n'.format(rep + 1, max_acc, record_test_acc))
# if osp.isfile(ResultCSV):
# df = pd.read_csv(ResultCSV)
# else:
# outputs_names = {name: type(value).__name__ for (name, value) in args._get_kwargs()}
# outputs_names.update({'Replicate{0:2d}'.format(ii): 'float' for ii in range(1,num_reps+1)})
# outputs_names.update({'Ave_Test_Acc': 'float', 'Test_Acc_std': 'float'})
# df = pd.DataFrame({c: pd.Series(dtype=t) for c, t in outputs_names.items()})
# new_row = {name: value for (name, value) in args._get_kwargs()}
# new_row.update({'Replicate{0:2d}'.format(ii): saved_model_test_acc[ii-1] for ii in range(1,num_reps+1)})
# new_row.update({'Ave_Test_Acc': np.mean(saved_model_test_acc), 'Test_Acc_std': np.std(saved_model_test_acc)})
# df = df.append(new_row, ignore_index=True)
# df.to_csv(ResultCSV, index=False)
np.savez(SaveResultFilename + '.npz',
epoch_train_loss=epoch_loss['train_mask'],
epoch_train_acc=epoch_acc['train_mask'],
epoch_valid_loss=epoch_loss['val_mask'],
epoch_valid_acc=epoch_acc['val_mask'],
epoch_test_loss=epoch_loss['test_mask'],
epoch_test_acc=epoch_acc['test_mask'],
saved_model_val_acc=saved_model_val_acc,
saved_model_test_acc=saved_model_test_acc)
print("--- %s seconds ---" % (time.time() - start_time))
c=np.load(SaveResultFilename+'.npz')
print('the average accuracy is'+format(np.average(c['saved_model_test_acc'])))
print(np.std(c['saved_model_test_acc']))
# print('the average test acc for 10 runs is'+ format(np.average(df['Ave_Test_Acc'])))