See the dedicated page for context and details.
Find below a preview of the datasets generated during the process.
european_routes_ranking.csv
: 3 889 rows, 13 columns: ‘ranking’, ‘type’, ‘route_code’, ‘passengers’, ‘route_name’, ‘origin_airport_code’, ‘origin_airport_country’, ‘origin_airport_icao’, ‘origin_airport_name’, ‘destination_airport_code’, ‘destination_airport_country’, ‘destination_airport_icao’, and ‘destination_airport_name’european_routes_ranking_with_turkey.csv
: same as above, but including data from Turkey- airport_qid_icao_details.csv: this is a dataset with details on all items with an ICAO code in Wikidata across the world, completely based on Wikidata, and used for matching (be mindful about duplicates and potential data issues in particular with minor airfields): 20 255 rows, 16 columns: ‘airport_qid’, ‘airport’, ‘country_qid’, ‘country’, ‘administrative_entity_qid’, ‘administrative_entity’, ‘latitude’, ‘longitude’, ‘iata_code’, ‘icao_code’, ‘hub_qid’, ‘hub’, ‘hub_latitude’, ‘hub_longitude’, ‘replaced_by_qid’, and ‘replaced_by_icao_code’
airport_qid_unique_icao_details.csv
: same as above, but without duplicates, and probably more suitable for most use cases: 19 932 rows, 16 columns: ‘airport_qid’, ‘airport’, ‘country_qid’, ‘country’, ‘administrative_entity_qid’, ‘administrative_entity’, ‘latitude’, ‘longitude’, ‘iata_code’, ‘icao_code’, ‘hub_qid’, ‘hub’, ‘hub_latitude’, ‘hub_longitude’, ‘replaced_by_qid’, and ‘replaced_by_icao_code’european_airports_with_wikidata_details.csv
: dataset with details on all airports that actually appear in Eurostat’savia_par_
datasets. All of them have a set of coordinates: 429 rows, 15 columns: ‘country’, ‘icao_code’, ‘airport_qid’, ‘airport’, ‘country_qid’, ‘country_name’, ‘administrative_entity_qid’, ‘administrative_entity’, ‘latitude’, ‘longitude’, ‘iata_code’, ‘hub_qid’, ‘hub’, ‘hub_latitude’, and ‘hub_longitude’european_airports_with_wikidata_details_fixed_hubs.csv
: similar to the above, but now each row also has a “hub”, i.e. the main city or location served by the airport, with relevant coordinates and Wikidata identifier. 429 rows, 15 columns: ‘country’, ‘icao_code’, ‘airport_qid’, ‘airport’, ‘country_qid’, ‘country_name’, ‘administrative_entity_qid’, ‘administrative_entity’, ‘latitude’, ‘longitude’, ‘iata_code’, ‘hub_qid’, ‘hub’, ‘hub_latitude’, and ‘hub_longitude’european_hub_routes.csv
: dataset with all European flights routes merged by hub (e.g. all London airports are summed together as a single destination). 3 318 rows, 12 columns: ‘ranking’, ‘route’, ‘passengers’, ‘origin_hub’, ‘origin_hub_qid’, ‘origin_hub_latitude’, ‘origin_hub_longitude’, ‘destination_hub’, ‘destination_hub_qid’, ‘destination_hub_latitude’, ‘destination_hub_longitude’, and ‘distance_km’european_hub_land_routes.csv
: similar to the above, but only routes that can plausibly be travelled by land are included. 2 345 rows, 12 columns: ‘ranking’, ‘route’, ‘passengers’, ‘distance_km’, ‘origin_hub’, ‘origin_hub_qid’, ‘origin_hub_latitude’, ‘origin_hub_longitude’, ‘destination_hub’, ‘destination_hub_qid’, ‘destination_hub_latitude’, and ‘destination_hub_longitude’train_routes.csv
. This is the original dataset produced by OBC Transeuropa for Greenpeace. 575 rows, 22 columns: ‘ID’, ‘top 150 intra-EU routes’, ‘top 250 European routes’, ‘Type of connection’, ‘Connected countries’, ‘N. of air passengers (2019)’, ‘Connection’, ‘Origin’, ‘Destination’, ‘via’, ‘N. of transfers (2019)’, ‘Is a night train involved? (2019)’, ‘Time of departure (2019)’, ‘Time of arrival (2019)’, ‘Duration of day trips (2019)’, ‘Duration of trips involving night trains (2019)’, ‘Duration of trips (2019)’, ‘Distance’, ‘Average speed of the journey (2019)’, ‘N. of weekly direct connections (2019)’, ‘Shortest duration in 2021’, and ‘Notes’train_routes_coords.csv
. Same as above, but with matching coordinates for the arrival and departure, distance, and unique identifiers that enables matching with previous datasets listed here or getting more data from Wikidata. 584 rows, 32 columns: ‘ID’, ‘top 150 intra-EU routes’, ‘top 250 European routes’, ‘Type of connection’, ‘Connected countries’, ‘N. of air passengers (2019)’, ‘Connection’, ‘Origin’, ‘Destination’, ‘via’, ‘N. of transfers (2019)’, ‘Is a night train involved? (2019)’, ‘Time of departure (2019)’, ‘Time of arrival (2019)’, ‘Duration of day trips (2019)’, ‘Duration of trips involving night trains (2019)’, ‘Duration of trips (2019)’, ‘Distance’, ‘Average speed of the journey (2019)’, ‘N. of weekly direct connections (2019)’, ‘Shortest duration in 2021’, ‘Notes’, ‘origin_hub_qid’, ‘origin_latitude’, ‘origin_longitude’, ‘destination_hub_qid’, ‘destination_latitude’, ‘destination_longitude’, ‘distance_air_km’, ‘distance_difference_km’, ‘route_qid’, and ‘passengers’
This repository and related dataset is distributed under a Creative Commons CC BY license.
The dataset on trains has been produced by OBC Transeuropa for Greenpeace. Read the full report, or check out this article by Lorenzo Ferrari and Gianluca De Feo for context.
Data on flights have been distributed by Eurostat. See the avia_par_
dataset for licensing and more details.
Code and datasets in this repository are by Giorgio Comai/OBCT/EDJNet.