diff --git a/src/notebooks/Python Examples/GSC23 MGnify Workshop.ipynb b/src/notebooks/Python Examples/GSC23 MGnify Workshop.ipynb
index 9e5f424..472dd12 100644
--- a/src/notebooks/Python Examples/GSC23 MGnify Workshop.ipynb
+++ b/src/notebooks/Python Examples/GSC23 MGnify Workshop.ipynb
@@ -65,7 +65,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"id": "ba4e90f6-7778-4d03-ae4f-05711d5d5c63",
"metadata": {
"tags": []
@@ -128,7 +128,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"id": "80005880-ec79-4991-96b0-b1d8848eac99",
"metadata": {
"tags": []
@@ -219,27 +219,12 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"id": "d1661765-bdf8-44b5-9c10-db0ffe7fb4d5",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdin",
- "output_type": "stream",
- "text": [
- "Type a Study Accession [default: MGYS00001935] \n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Using \"MGYS00001935\" as Study Accession\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from lib.variable_utils import get_variable_from_link_or_input\n",
"\n",
@@ -261,7 +246,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"id": "5173ced5-e607-49a2-88d1-88c57d68baaf",
"metadata": {
"tags": []
@@ -287,220 +272,12 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"id": "f1071967-42f7-4890-99dd-58d138ebffac",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " type | \n",
- " id | \n",
- " attributes.accession | \n",
- " attributes.analysis-status | \n",
- " attributes.experiment-type | \n",
- " attributes.analysis-summary | \n",
- " attributes.pipeline-version | \n",
- " attributes.is-private | \n",
- " attributes.complete-time | \n",
- " attributes.instrument-platform | \n",
- " attributes.instrument-model | \n",
- " relationships.sample.data.id | \n",
- " relationships.sample.data.type | \n",
- " relationships.run.data.id | \n",
- " relationships.run.data.type | \n",
- " relationships.study.data.id | \n",
- " relationships.study.data.type | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " analysis-jobs | \n",
- " MGYA00585242 | \n",
- " MGYA00585242 | \n",
- " completed | \n",
- " amplicon | \n",
- " [{'key': 'Submitted nucleotide sequences', 'value': '1474912'}, {'key': 'Nucleotide sequences after format-specific filtering', 'value': '335618'}, {'key': 'Nucleotide sequences after length filtering', 'value': '335618'}, {'key': 'Nucleotide sequences after undetermined bases filtering', 'value': '335618'}, {'key': 'Predicted SSU sequences', 'value': '335119'}, {'key': 'Predicted LSU sequences', 'value': '0'}] | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:20:39 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 2500 | \n",
- " ERS1871389 | \n",
- " samples | \n",
- " ERR2098577 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " analysis-jobs | \n",
- " MGYA00585243 | \n",
- " MGYA00585243 | \n",
- " completed | \n",
- " amplicon | \n",
- " [{'key': 'Submitted nucleotide sequences', 'value': '1178982'}, {'key': 'Nucleotide sequences after format-specific filtering', 'value': '1060738'}, {'key': 'Nucleotide sequences after length filtering', 'value': '1060738'}, {'key': 'Nucleotide sequences after undetermined bases filtering', 'value': '1060738'}, {'key': 'Predicted SSU sequences', 'value': '1049588'}, {'key': 'Predicted LSU sequences', 'value': '0'}] | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:22:00 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 2500 | \n",
- " ERS1871409 | \n",
- " samples | \n",
- " ERR2098437 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " analysis-jobs | \n",
- " MGYA00585244 | \n",
- " MGYA00585244 | \n",
- " completed | \n",
- " amplicon | \n",
- " [{'key': 'Submitted nucleotide sequences', 'value': '2285192'}, {'key': 'Nucleotide sequences after format-specific filtering', 'value': '772970'}, {'key': 'Nucleotide sequences after length filtering', 'value': '772970'}, {'key': 'Nucleotide sequences after undetermined bases filtering', 'value': '772970'}, {'key': 'Predicted SSU sequences', 'value': '772662'}, {'key': 'Predicted LSU sequences', 'value': '3'}] | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:24:06 | \n",
- " ILLUMINA | \n",
- " Illumina MiSeq | \n",
- " ERS1871427 | \n",
- " samples | \n",
- " ERR2098500 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " analysis-jobs | \n",
- " MGYA00585245 | \n",
- " MGYA00585245 | \n",
- " completed | \n",
- " amplicon | \n",
- " [{'key': 'Submitted nucleotide sequences', 'value': '1863283'}, {'key': 'Nucleotide sequences after format-specific filtering', 'value': '1679669'}, {'key': 'Nucleotide sequences after length filtering', 'value': '1679669'}, {'key': 'Nucleotide sequences after undetermined bases filtering', 'value': '1679669'}, {'key': 'Predicted SSU sequences', 'value': '1674242'}, {'key': 'Predicted LSU sequences', 'value': '0'}] | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:25:40 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 2500 | \n",
- " ERS1871411 | \n",
- " samples | \n",
- " ERR2098439 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " analysis-jobs | \n",
- " MGYA00585246 | \n",
- " MGYA00585246 | \n",
- " completed | \n",
- " amplicon | \n",
- " [{'key': 'Submitted nucleotide sequences', 'value': '1244024'}, {'key': 'Nucleotide sequences after format-specific filtering', 'value': '1110539'}, {'key': 'Nucleotide sequences after length filtering', 'value': '1110539'}, {'key': 'Nucleotide sequences after undetermined bases filtering', 'value': '1110539'}, {'key': 'Predicted SSU sequences', 'value': '1107011'}, {'key': 'Predicted LSU sequences', 'value': '0'}] | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:27:22 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 2500 | \n",
- " ERS1871430 | \n",
- " samples | \n",
- " ERR2098450 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " type id attributes.accession \\\n",
- "0 analysis-jobs MGYA00585242 MGYA00585242 \n",
- "1 analysis-jobs MGYA00585243 MGYA00585243 \n",
- "2 analysis-jobs MGYA00585244 MGYA00585244 \n",
- "3 analysis-jobs MGYA00585245 MGYA00585245 \n",
- "4 analysis-jobs MGYA00585246 MGYA00585246 \n",
- "\n",
- " attributes.analysis-status attributes.experiment-type \\\n",
- "0 completed amplicon \n",
- "1 completed amplicon \n",
- "2 completed amplicon \n",
- "3 completed amplicon \n",
- "4 completed amplicon \n",
- "\n",
- " attributes.analysis-summary \\\n",
- "0 [{'key': 'Submitted nucleotide sequences', 'value': '1474912'}, {'key': 'Nucleotide sequences after format-specific filtering', 'value': '335618'}, {'key': 'Nucleotide sequences after length filtering', 'value': '335618'}, {'key': 'Nucleotide sequences after undetermined bases filtering', 'value': '335618'}, {'key': 'Predicted SSU sequences', 'value': '335119'}, {'key': 'Predicted LSU sequences', 'value': '0'}] \n",
- "1 [{'key': 'Submitted nucleotide sequences', 'value': '1178982'}, {'key': 'Nucleotide sequences after format-specific filtering', 'value': '1060738'}, {'key': 'Nucleotide sequences after length filtering', 'value': '1060738'}, {'key': 'Nucleotide sequences after undetermined bases filtering', 'value': '1060738'}, {'key': 'Predicted SSU sequences', 'value': '1049588'}, {'key': 'Predicted LSU sequences', 'value': '0'}] \n",
- "2 [{'key': 'Submitted nucleotide sequences', 'value': '2285192'}, {'key': 'Nucleotide sequences after format-specific filtering', 'value': '772970'}, {'key': 'Nucleotide sequences after length filtering', 'value': '772970'}, {'key': 'Nucleotide sequences after undetermined bases filtering', 'value': '772970'}, {'key': 'Predicted SSU sequences', 'value': '772662'}, {'key': 'Predicted LSU sequences', 'value': '3'}] \n",
- "3 [{'key': 'Submitted nucleotide sequences', 'value': '1863283'}, {'key': 'Nucleotide sequences after format-specific filtering', 'value': '1679669'}, {'key': 'Nucleotide sequences after length filtering', 'value': '1679669'}, {'key': 'Nucleotide sequences after undetermined bases filtering', 'value': '1679669'}, {'key': 'Predicted SSU sequences', 'value': '1674242'}, {'key': 'Predicted LSU sequences', 'value': '0'}] \n",
- "4 [{'key': 'Submitted nucleotide sequences', 'value': '1244024'}, {'key': 'Nucleotide sequences after format-specific filtering', 'value': '1110539'}, {'key': 'Nucleotide sequences after length filtering', 'value': '1110539'}, {'key': 'Nucleotide sequences after undetermined bases filtering', 'value': '1110539'}, {'key': 'Predicted SSU sequences', 'value': '1107011'}, {'key': 'Predicted LSU sequences', 'value': '0'}] \n",
- "\n",
- " attributes.pipeline-version attributes.is-private attributes.complete-time \\\n",
- "0 5.0 False 2021-07-23T09:20:39 \n",
- "1 5.0 False 2021-07-23T09:22:00 \n",
- "2 5.0 False 2021-07-23T09:24:06 \n",
- "3 5.0 False 2021-07-23T09:25:40 \n",
- "4 5.0 False 2021-07-23T09:27:22 \n",
- "\n",
- " attributes.instrument-platform attributes.instrument-model \\\n",
- "0 ILLUMINA Illumina HiSeq 2500 \n",
- "1 ILLUMINA Illumina HiSeq 2500 \n",
- "2 ILLUMINA Illumina MiSeq \n",
- "3 ILLUMINA Illumina HiSeq 2500 \n",
- "4 ILLUMINA Illumina HiSeq 2500 \n",
- "\n",
- " relationships.sample.data.id relationships.sample.data.type \\\n",
- "0 ERS1871389 samples \n",
- "1 ERS1871409 samples \n",
- "2 ERS1871427 samples \n",
- "3 ERS1871411 samples \n",
- "4 ERS1871430 samples \n",
- "\n",
- " relationships.run.data.id relationships.run.data.type \\\n",
- "0 ERR2098577 runs \n",
- "1 ERR2098437 runs \n",
- "2 ERR2098500 runs \n",
- "3 ERR2098439 runs \n",
- "4 ERR2098450 runs \n",
- "\n",
- " relationships.study.data.id relationships.study.data.type \n",
- "0 MGYS00001935 studies \n",
- "1 MGYS00001935 studies \n",
- "2 MGYS00001935 studies \n",
- "3 MGYS00001935 studies \n",
- "4 MGYS00001935 studies "
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"analyses.head()"
]
@@ -523,23 +300,12 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"id": "fd8ef42e-ea80-4a55-863e-12342dddab5a",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAGbCAYAAABDOnNqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmg0lEQVR4nO3dd1hTZ/8G8DsDSNh7I0MR3Cgqbq27WsWqtVZbtY4Oq32ttfq2auuq1fbntu6qHVqts627bivWtq66xYETRERAQEaS5/cHL6kRBKLACcn9uS4u5eTknG/CSXLnOc/zHJkQQoCIiIiohORSF0BEREQVC8MDERERGYXhgYiIiIzC8EBERERGYXggIiIiozA8EBERkVEYHoiIiMgoDA9ERERkFIYHIiIiMgrDA0nqq6++QkhICBQKBSIiIqQup1BBQUEYMGCA1GUUasKECZDJZFKXUWZkMhkmTJhQbvvbv38/ZDIZ1q9fX6b7Mfe/G5m/ChEeVq5cCZlMpv9RqVSoWrUqhg0bhrt370pd3nM7d+4cJkyYgLi4OKlLKVe7du3C6NGj0bRpU6xYsQJTp06VuiQis7B69WrMnj1b6jLK1YIFC7By5coSrZuZmYkJEyZg//79ZVqTOVNKXYAxJk2ahODgYGRlZeH333/HwoULsW3bNpw5cwa2trZSl/fMzp07h4kTJ6JVq1YICgqSupxys3fvXsjlcnzzzTewtraWuhyicjNu3Dj897//LbPtr169GmfOnMGIESPKbB+mZsGCBXB3dy9RK2FmZiYmTpwIAGjVqlXZFmamKlR4ePHFF1G/fn0AwODBg+Hm5oaZM2fi559/xmuvvfZc287MzKzQAaQiSkxMhFqtZnAgi6NUKqFUmsbbb1ZWFqytrSGXV4iGaDIRFfpoad26NQDg2rVr+mU//PADIiMjoVar4erqit69e+PmzZsG92vVqhVq1qyJY8eOoUWLFrC1tcUnn3wCIO+FNGHCBFStWhUqlQo+Pj7o3r07rly5or+/TqfD7NmzUaNGDahUKnh5eeHtt9/GgwcPDPYTFBSEl156Cb///jsaNmwIlUqFkJAQfPfdd/p1Vq5ciVdeeQUA8MILL+hPzeQ3p/3888/o3LkzfH19YWNjg8qVK2Py5MnQarUFno+vv/4aISEhUKvVaNiwIQ4dOoRWrVoVSNbZ2dn47LPPUKVKFdjY2CAgIACjR49Gdna2wXq//fYbmjVrBmdnZ9jb2yMsLEz/PBVFo9Fg8uTJqFy5MmxsbBAUFIRPPvnEYPsymQwrVqxARkaG/jEX1eR46NAhvPLKK6hUqZK+5g8++ACPHj0yWG/AgAGwt7fH7du30a1bN9jb28PDwwOjRo0q8Jz93//9H5o0aQI3Nzeo1WpERkYWe6776tWrkMlkmDVrVoHbYmJiIJPJ8OOPPwIAHj58iBEjRiAoKAg2Njbw9PREu3btcPz4cYP7HT16FB07doSTkxNsbW3RsmVLHD58uMD2f//9dzRo0AAqlQqVK1fG4sWLi6z1cbGxsejRowe8vb2hUqng7++P3r17IzU1Vb/OihUr0Lp1a3h6esLGxgbVq1fHwoULC2wr/7jev38/6tevD7VajVq1aumP2Y0bN6JWrVpQqVSIjIzEiRMnDO6f/ze6evUqOnToADs7O/j6+mLSpEkoyUV+b9++jYEDB8LLyws2NjaoUaMGli9fXmC9efPmoUaNGrC1tYWLiwvq16+P1atXl+j50mq1+OSTT+Dt7Q07Ozt07drV4H3ks88+g5WVFe7du1fgvm+99RacnZ2RlZX11O0X1udBJpNh2LBh2Lx5M2rWrKl/bDt27DBYr7jjqlWrVti6dSuuX7+uf23lt2jm9+lYs2YNxo0bBz8/P9ja2iItLe2p/TDyTxs/flr1eY8BALhw4QJ69uwJV1dXqFQq1K9fH7/88kuh+z58+DBGjhwJDw8P2NnZ4eWXXzZ47oOCgnD27FkcOHBA/5if1qIQFxcHDw8PAMDEiRP160+YMAErVqyATCYrtN6pU6dCoVDg9u3b+uc5/3OkSZMmUKvVCA4OxqJFiwrct6TvuRWKqABWrFghAIi//vrLYPmcOXMEALFo0SIhhBBTpkwRMplMvPrqq2LBggVi4sSJwt3dXQQFBYkHDx7o79eyZUvh7e0tPDw8xPDhw8XixYvF5s2bhUajEW3atBEARO/evcX8+fPFF198IVq3bi02b96sv//gwYOFUqkUQ4YMEYsWLRJjxowRdnZ2okGDBiInJ0e/XmBgoAgLCxNeXl7ik08+EfPnzxf16tUTMplMnDlzRgghxJUrV8T7778vAIhPPvlEfP/99+L7778XCQkJQgghunXrJnr16iW++uorsXDhQvHKK68IAGLUqFEGz8WCBQsEANG8eXMxd+5cMXLkSOHq6ioqV64sWrZsqV9Pq9WK9u3bC1tbWzFixAixePFiMWzYMKFUKkV0dLR+vTNnzghra2tRv359MWfOHLFo0SIxatQo0aJFi2L/Xv379xcARM+ePcXXX38t+vXrJwCIbt266df5/vvvRfPmzYWNjY3+MV+5cuWp2xw+fLjo1KmTmDp1qli8eLEYNGiQUCgUomfPngX2rVKpRI0aNcTAgQPFwoULRY8ePQQAsWDBAoN1/f39xdChQ8X8+fPFzJkzRcOGDQUAsWXLFoP1AgMDRf/+/fW/N23aVERGRhaocejQocLBwUFkZGQIIYTo06ePsLa2FiNHjhTLli0T06dPF126dBE//PCD/j579uwR1tbWonHjxmLGjBli1qxZonbt2sLa2locPXpUv94///wj1Gq1qFSpkvjiiy/E5MmThZeXl6hdu7Yo7mWcnZ0tgoODha+vr5gyZYpYtmyZmDhxomjQoIGIi4vTr9egQQMxYMAAMWvWLDFv3jzRvn17AUDMnz+/wPMRFhYmfHx8xIQJE8SsWbOEn5+fsLe3Fz/88IOoVKmSmDZtmpg2bZpwcnISVapUEVqttsDfKDQ0VLzxxhti/vz54qWXXhIAxPjx4w32BUB89tln+t8TEhKEv7+/CAgIEJMmTRILFy4UXbt2FQDErFmz9OstWbJEfwwuXrxYzJkzRwwaNEi8//77RT5X+/btEwBErVq1RO3atcXMmTPFf//7X6FSqUTVqlVFZmamEEKI2NhYAUDMmzevwHPt4uIiBg4cWOR+PvvsswJ/NwCiTp06wsfHR0yePFnMnj1bhISECFtbW5GUlKRfr7jjateuXSIiIkK4u7vrX1ubNm0yeHzVq1cXERERYubMmeKLL74QGRkZhdYkxL/vv9euXdMve95j4MyZM8LJyUlUr15dTJ8+XcyfP1+0aNFCyGQysXHjxgL7rlu3rmjdurWYN2+e+PDDD4VCoRC9evXSr7dp0ybh7+8vwsPD9Y95165dhT736enpYuHChQKAePnll/Xrnzp1SqSlpQm1Wi0+/PDDAverXr26aN26tf73li1bCl9fX+Hp6SmGDRsm5s6dK5o1ayYAiG+++Ua/XknfcyuaChUedu/eLe7duydu3rwp1qxZI9zc3IRarRa3bt0ScXFxQqFQiM8//9zgvqdPnxZKpdJgecuWLQ1CR77ly5cLAGLmzJkFatDpdEIIIQ4dOiQAiFWrVhncvmPHjgLLAwMDBQBx8OBB/bLExERhY2NjcHCuW7dOABD79u0rsN/8N6vHvf3228LW1lZkZWUJIfLesNzc3ESDBg1Ebm6ufr2VK1cKAAbh4fvvvxdyuVwcOnTIYJuLFi0SAMThw4eFEELMmjVLABD37t0rsP+inDx5UgAQgwcPNlg+atQoAUDs3btXv6x///7Czs6uRNst7Hn44osvhEwmE9evXzfYJgAxadIkg3Xr1q1b4AP/yW3m5OSImjVrGrxBCFEwPCxevFgAEOfPnze4r7u7u8F6Tk5O4r333nvqY9LpdCI0NFR06NBBf3zl1xUcHCzatWunX9atWzehUqkMHuu5c+eEQqEoNjycOHFCABDr1q0rcr3CnuMOHTqIkJAQg2X5x3VMTIx+2c6dOwUAoVarDWrMf64eP7bz/0bDhw/XL9PpdKJz587C2tra4Jh7MjwMGjRI+Pj4GHyYCiFE7969hZOTk/4xREdHixo1ahT5eAuT/+Hq5+cn0tLS9Mt/+uknAUDMmTNHv6xx48YiKirK4P4bN2586mv5cU8LD9bW1uLy5cv6ZadOnSoQUoo7roQQonPnziIwMPCpjy8kJKTA39vY8PA8x0CbNm1ErVq19O9hQuQdA02aNBGhoaEF9t22bVuD18gHH3wgFAqFSElJ0S+rUaOGwXtdUe7du1fg2Mr32muvCV9fX4Owc/z4cQFArFixQr8s/3NkxowZ+mXZ2dkiIiJCeHp66r9IlvQ9t6KpUKct2rZtCw8PDwQEBKB3796wt7fHpk2b4Ofnh40bN0Kn06FXr15ISkrS/3h7eyM0NBT79u0z2JaNjQ3efPNNg2UbNmyAu7s7hg8fXmDf+c1569atg5OTE9q1a2ewn8jISNjb2xfYT/Xq1dG8eXP97x4eHggLC8PVq1dL9JjVarX+/w8fPkRSUhKaN2+OzMxMXLhwAQDw999/4/79+xgyZIjBedS+ffvCxcXFYHvr1q1DtWrVEB4eblB//img/PqdnZ0B5J020el0JaoVALZt2wYAGDlypMHyDz/8EACwdevWEm/rcY8/DxkZGUhKSkKTJk0ghCi0ifGdd94x+L158+YFnvPHt/ngwQOkpqaiefPmBU4rPKlXr15QqVRYtWqVftnOnTuRlJSE119/Xb/M2dkZR48exZ07dwrdzsmTJxEbG4s+ffrg/v37+r9FRkYG2rRpg4MHD0Kn00Gr1WLnzp3o1q0bKlWqpL9/tWrV0KFDhyJrBQAnJyd9jZmZmU9d7/HnIzU1FUlJSWjZsiWuXr1qcHoDyDuuGzdurP89KioKQN6pxMdrzF9e2PE+bNgw/f/zm+xzcnKwe/fuQusTQmDDhg3o0qULhBAGx2+HDh2Qmpqq/9s5Ozvj1q1b+Ouvv576eIvSr18/ODg46H/v2bMnfHx89Md3/jpHjx41OKW5atUqBAQEoGXLls+037Zt26Jy5cr632vXrg1HR0eD56+446ok+vfvb/D3fhbPegwkJydj79696NWrl/49LSkpCffv30eHDh0QGxurPzWQ76233jI4pdK8eXNotVpcv379uR5DYfr164c7d+4YvJevWrUKarUaPXr0MFhXqVTi7bff1v9ubW2Nt99+G4mJiTh27BiAkr/nVjQVKjx8/fXX+O2337Bv3z6cO3dOf84UyDunK4RAaGgoPDw8DH7Onz+PxMREg235+fkV6Kh35coVhIWFFdmRKTY2FqmpqfD09Cywn/T09AL7efxFlM/FxaVA/4inOXv2LF5++WU4OTnB0dERHh4e+g+o/Df0/BdQlSpVDO6rVCoLjN6IjY3F2bNnC9RetWpVANDX/+qrr6Jp06YYPHgwvLy80Lt3b/z000/FBonr169DLpcXqMXb2xvOzs7P/GK/ceMGBgwYAFdXV30/hvw36Cc/2FQqlf6cZr7CnvMtW7agUaNGUKlUcHV1hYeHBxYuXFhge09ydnZGly5dDM6fr1q1Cn5+fvo3BAD48ssvcebMGQQEBKBhw4aYMGGCwYdAbGwsgLw38if/HsuWLUN2djZSU1Nx7949PHr0CKGhoQVqCQsLK7JWAAgODsbIkSOxbNkyuLu7o0OHDvj6668LPM7Dhw+jbdu2sLOzg7OzMzw8PPR9XJ5c98njOj+gBAQEFLr8yedeLpcjJCTEYFn+Mfi0Icv37t1DSkoKlixZUuD5yv8ikH/8jhkzBvb29mjYsCFCQ0Px3nvvFdqP5GmefK5lMhmqVKliUNurr74KGxsbfYhMTU3Fli1b0Ldv32eew6Ek7xfFHVclERwc/Ez1FVVrSY+By5cvQwiB8ePHF/g7fvbZZwBQ7Pto/peikr6PGqNdu3bw8fHR/111Oh1+/PFHREdHGwRKAPD19YWdnZ3BsieP45K+51Y0ptHdt4QaNmyoH23xJJ1OB5lMhu3bt0OhUBS43d7e3uD3Z03dOp0Onp6eBt86H/fkh1ZhtQAoUcewlJQUtGzZEo6Ojpg0aRIqV64MlUqF48ePY8yYMUa1CDxef61atTBz5sxCb89/4avVahw8eBD79u3D1q1bsWPHDqxduxatW7fGrl27nvq48pXmBDharRbt2rVDcnIyxowZg/DwcNjZ2eH27dsYMGBAgeehuNqAvA6YXbt2RYsWLbBgwQL4+PjAysoKK1asKFGnun79+mHdunWIiYlBrVq18Msvv2Do0KEGPdZ79eqF5s2bY9OmTdi1axe++uorTJ8+HRs3bsSLL76or/urr7566gRZ9vb2pdKpasaMGRgwYAB+/vln7Nq1C++//z6++OIL/PHHH/D398eVK1fQpk0bhIeHY+bMmQgICIC1tTW2bduGWbNmlfg5fp7jvTj5Nbz++uvo379/oevUrl0bQF6rzMWLF7Flyxbs2LEDGzZswIIFC/Dpp5/qh+g9LxcXF7z00ktYtWoVPv30U6xfvx7Z2dkGrU/GKsnzV9xxVRKFvf897TVbWOfsomot7jHk/x1HjRr11JazJ798lOVx9SSFQoE+ffpg6dKlWLBgAQ4fPow7d+4889+1pO+5FU2FCg9FqVy5MoQQCA4O1ie6Z9nG0aNHkZubCysrq6eus3v3bjRt2vS5m/3yPe1Fu3//fty/fx8bN25EixYt9MsfH10CAIGBgQDyEv0LL7ygX67RaBAXF6d/Q82v/9SpU2jTpk2xH/ByuRxt2rRBmzZtMHPmTEydOhVjx47Fvn370LZt20LvExgYCJ1Oh9jYWFSrVk2//O7du0hJSdHXaozTp0/j0qVL+Pbbb9GvXz/98t9++83obeXbsGEDVCoVdu7cCRsbG/3yFStWlOj+HTt2hIeHB1atWoWoqChkZmbijTfeKLCej48Phg4diqFDhyIxMRH16tXD559/jhdffFHfPO3o6PjU5xPIC6RqtVrfUvG4ixcvlqheAKhVqxZq1aqFcePGISYmBk2bNsWiRYswZcoU/Prrr8jOzsYvv/xi8C2vrJpUdTodrl69avBavXTpEgA8da4TDw8PODg4QKvVFvl85bOzs8Orr76KV199FTk5OejevTs+//xzfPzxx1CpVEXe98nnWgiBy5cvG7yWgLwQGR0djb/++gurVq1C3bp1UaNGjWJre15FHVfAs4X3/G/zKSkp+tOWAEr91EB+i5OVlVWJ/o4lZcxjLm7dfv36YcaMGfj111+xfft2eHh4FBp07ty5g4yMDIPWhyePY2PecyuSCnXaoijdu3eHQqHAxIkTC6RRIQTu379f7DZ69OiBpKQkzJ8/v8Bt+dvs1asXtFotJk+eXGAdjUaDlJQUo2vPP/CevG9+2n788eTk5GDBggUG69WvXx9ubm5YunQpNBqNfvmqVasKNOv16tULt2/fxtKlSwvU8ejRI2RkZADIOy/5pPxvx0V9E+7UqRMAFJjdLj91d+7c+an3fZrCngchBObMmWP0th7fpkwmM/hWFRcXh82bN5fo/kqlEq+99hp++uknrFy5ErVq1TL4YNFqtQWa+j09PeHr66t//iIjI1G5cmX83//9H9LT0wvsI38omkKhQIcOHbB582bcuHFDf/v58+exc+fOYmtNS0szOC6AvCAhl8v1tRT2HKemppY4TD2Lx19nQgjMnz8fVlZWaNOmTaHrKxQK9OjRAxs2bMCZM2cK3P740L0nX+/W1taoXr06hBDIzc0ttrbvvvsODx8+1P++fv16xMfHF/hm/+KLL8Ld3R3Tp0/HgQMHnqvVoSRKclwBee8pxZ1+e1J+mD148KB+WUZGBr799tvnqLggT09PtGrVCosXL0Z8fHyB2wsb/loSdnZ2JX7/zZ/T52nr165dG7Vr18ayZcuwYcMG9O7du9DT2RqNxmDIdE5ODhYvXgwPDw9ERkYCKPl7bkVjVi0PU6ZMwccff4y4uDh069YNDg4OuHbtGjZt2oS33noLo0aNKnIb/fr1w3fffYeRI0fizz//RPPmzZGRkYHdu3dj6NChiI6ORsuWLfH222/jiy++wMmTJ9G+fXtYWVkhNjYW69atw5w5c9CzZ0+jao+IiIBCocD06dORmpoKGxsbtG7dGk2aNIGLiwv69++P999/HzKZDN9//32BcGRtbY0JEyZg+PDhaN26NXr16oW4uDisXLkSlStXNki7b7zxBn766Se888472LdvH5o2bQqtVosLFy7gp59+ws6dO1G/fn1MmjQJBw8eROfOnREYGIjExEQsWLAA/v7+aNas2VMfS506ddC/f38sWbJEf9rlzz//xLfffotu3boZtIyUVHh4OCpXroxRo0bh9u3bcHR0xIYNG57rfGfnzp0xc+ZMdOzYEX369EFiYiK+/vprVKlSBf/880+JttGvXz/MnTsX+/btw/Tp0w1ue/jwIfz9/dGzZ0/UqVMH9vb22L17N/766y/MmDEDQF7LzrJly/Diiy+iRo0aePPNN+Hn54fbt29j3759cHR0xK+//gogbzz6jh070Lx5cwwdOhQajUY/j0Fx9e7duxfDhg3DK6+8gqpVq0Kj0eD777/XfxgDQPv27WFtbY0uXbrg7bffRnp6OpYuXQpPT89C3+Cfl0qlwo4dO9C/f39ERUVh+/bt2Lp1Kz755JMCp/4eN23aNOzbtw9RUVEYMmQIqlevjuTkZBw/fhy7d+/Wh9727dvD29sbTZs2hZeXF86fP4/58+ejc+fOBc5bF8bV1RXNmjXDm2++ibt372L27NmoUqUKhgwZYrCelZUVevfujfnz50OhUDz3ZHXFKclxBeQF07Vr12LkyJFo0KAB7O3t0aVLlyK33b59e1SqVAmDBg3CRx99BIVCgeXLl8PDw8MgtJaGr7/+Gs2aNUOtWrUwZMgQhISE4O7duzhy5Ahu3bqFU6dOGb3NyMhILFy4EFOmTEGVKlXg6elp0AfpcWq1GtWrV8fatWtRtWpVuLq6ombNmqhZs6Z+nX79+uk/M54WCn19fTF9+nTExcWhatWqWLt2LU6ePIklS5boW69L+p5b4ZTn0I5n9bR5HgqzYcMG0axZM2FnZyfs7OxEeHi4eO+998TFixf167Rs2fKpw7gyMzPF2LFjRXBwsLCyshLe3t6iZ8+eBeYgWLJkiYiMjBRqtVo4ODiIWrVqidGjR4s7d+7o1wkMDBSdO3cusI+WLVsWGFK0dOlSERISoh96lz+s6fDhw6JRo0ZCrVYLX19fMXr0aP2QqCeHg82dO1cEBgYKGxsb0bBhQ3H48GERGRkpOnbsaLBeTk6OmD59uqhRo4awsbERLi4uIjIyUkycOFGkpqYKIfLmH4iOjha+vr7C2tpa+Pr6itdee01cunSpyOdfCCFyc3PFxIkT9c9hQECA+Pjjjw2GZQlh3FDNc+fOibZt2wp7e3vh7u4uhgwZoh/G9vjwqadts7BhaN98840IDQ0VNjY2Ijw8XKxYsaLQ9Z4cqvm4GjVqCLlcLm7dumWwPDs7W3z00UeiTp06wsHBQdjZ2Yk6deoUmGtCiLyhlN27dxdubm7CxsZGBAYGil69eok9e/YYrHfgwAERGRkprK2tRUhIiFi0aNFTh9c97urVq2LgwIGicuXKQqVSCVdXV/HCCy+I3bt3G6z3yy+/iNq1awuVSiWCgoLE9OnT9cOXnxymV9hxDaDAEMJr164JAOKrr77SL8v/G125ckU//t3Ly0t89tlnBsPj8rf55HC6u3fvivfee08EBAToX6Nt2rQRS5Ys0a+zePFi0aJFC/1zWrlyZfHRRx/pj++nyR/K+OOPP4qPP/5YeHp6CrVaLTp37mww/PBxf/75pwAg2rdvX+S2H/e0oZqFDcF8/Pgr6XGVnp4u+vTpI5ydnQUA/bDN/Mf3tGG7x44dE1FRUcLa2lpUqlRJzJw586lDNZ/nGBAib46bfv36CW9vb2FlZSX8/PzESy+9JNavX69f52nv/fmP4/H3wISEBNG5c2fh4OBQYIh6YWJiYvSvp8KOs/j4eKFQKETVqlULvX/+58jff/8tGjduLFQqlQgMDCwwL4oQJXvPrWhkQpRBjxMyCTqdDh4eHujevXuhTWb0/OrWrQtXV1fs2bNH6lIqjAEDBmD9+vWFnqqpiE6dOoWIiAh89913hfZ7oYopKSkJPj4++PTTTzF+/PgCt7dq1QpJSUmFnkKzBGbT58HSZWVlFTid8d133yE5OZkXfikjf//9N06ePGnQiZMsz9KlS2Fvb4/u3btLXQqVopUrV0Kr1TIQPoXZ9HmwdH/88Qc++OADvPLKK3Bzc8Px48fxzTffoGbNmvprZ1DpOHPmDI4dO4YZM2bAx8cHr776qtQlkQR+/fVXnDt3DkuWLMGwYcMKjPenimnv3r04d+4cPv/8c3Tr1s2irnRsDIYHMxEUFISAgADMnTsXycnJcHV1Rb9+/TBt2jRetbKUrV+/HpMmTUJYWBh+/PHHYof9kXkaPnw47t69i06dOpXa3BEkvUmTJumHMs+bN0/qckwW+zwQERGRUdjngYiIiIzC8EBERERGYXggIiIiozA8EBERkVEYHoiIiMgoDA9ERERkFIYHIiIiMgrDAxERERmF4YGIiIiMwvBARERERmF4ICIiIqMwPBAREZFRGB6IiIjIKAwPREREZBSGByIiIjIKwwMREREZheGBiIiIjMLwQEREREZheCAiIiKjMDwQERGRURgeiIiIyCgMD0RERGQUhgciIiIyCsMDERERGYXhgYiIiIzC8EBERERGYXggIiIiozA8EBERkVEYHoiIiMgoDA9ERERkFIYHIiIiMgrDAxERERmF4YGIiIiMwvBARERERmF4ICIiIqMwPBAREZFRGB6IiIjIKAwPREREZBSGByIiIjKKUuoCiKjsJGfkIPFhFu6mZeN+ejayNTpk52qRo9UhR6NDtuaxf7U6ZOfm/SsDYGutgNpaATtr5f/+VcA2//82CqitlLCzUcDDwQZeDirI5TKpHy4RlROGB6IKKvFhFq4kZuBOyiPcfZiFxLRs3E3L+t9PNu6lZyNHoyuXWpRyGbwcVfBzVsPXWQVfZzV8ndXwc1bDzyXv//Y2fLshMhcyIYSQuggierqUzBycu5OG8wkPEXv3IS4npuPyvXSkZOZKXZpRXGytUM3HETX9nFDD1xE1fB0R4m7PFguiCojhgciEZGRr8GdcMk7cSMG5O6k4dycNd1KzpC6rzKitFAj3cfhfmMgLFWHeDrBRKqQujYiKwPBAJKHMHA3+inuAI1fu44+r93Hmdio0Ost+SSrlMtT0c0LzUHc0reKOepVcYK1k324iU8LwQFSOHuVo8ff1ZH1Y+OcWw0JxbK0VaBjsimZV3NE81ANh3g5Sl0Rk8RgeiMpYQmoWtp+Jx/YzCThx4wFytXzJPQ8PBxs0q5LXKtGiqjs8HVRSl0RkcRgeiMpAfOojbDudgG2n43H8xgPwVVY25DIgKtgNXSN80ammD5xsraQuicgiMDwQlZLbKY+w/XQ8tp2Ox4mbKQwM5cxaIUeLqu7oUscX7ap7wdaaQ0OJygrDA9FzSM7Iwcbjt7Dln3icusXAYCrUVgq0re6FrnV80bKqBztcEpUyhgeiZ3DsejJ++OMGtp6OL7eJmOjZOKmt0KmWN/pGBaKmn5PU5RCZBYYHohLKzNFg84k7+OGP6zgXnyZ1OfQM6lZyRr/GgehUy4dzSRA9B4YHomJcTkzHD39cx4bjt/AwSyN1OVQK3Oys0bthAPo3DoKnI0drEBmL4YGoEEII7Dx7F9/GxOHI1ftSl0NlxFohx0u1fTC4eQiq+zpKXQ5RhcHwQPQYIQS2nU7A3D2xuHj3odTlUDlqHOKGt1uGoFWYp9SlEJk8hgci5IWG7WcSMGc3Q4Olqx/ogo86hCEqxE3qUohMFsMDWbT80DB3TywuJDA00L+ah7rjow5hqO3vLHUpRCaH4YEskhACO84kYA5DAxWjQw0vfNg+DFW9eE0NonwMD2Rx9l9MxPQdF3Gewy2phOQyIDrCDyPahiLQzU7qcogkx/BAFuNmciYm/noOu8/flboUqqCUchl6NQjAB22rwsPBRupyiCTD8EBmLytXi0UHrmDh/ivI5myQVAocVUqM7hiOvlGVIJPJpC6HqNwxPJBZ++3cXUzachY3kx9JXQqZobqVnPF5t1qcI4IsDsMDmaW4pAxM/PUs9l28J3UpZOYUchkGNAnCyHZVYWfDK3mSZWB4ILPyKEeLr/ddxpJDV3nBKipXPk4qfNalBjrW9Ja6FKIy91zXqW3VqhVGjBih/z0oKAizZ89+zpKM36/UTK0eS3X8xgO8OOcg5u+7zOBA5S4+NQvv/HAMg7/9C7ceZEpdDlGZMio8DBgwAN26dSujUkpu48aNmDx5cpnvRyaTYfPmzQWWP/k8PFnPtWvX0KdPH/j6+kKlUsHf3x/R0dG4cOFCmda7f/9+REdHw8fHB3Z2doiIiMCqVasM1lm5ciVkMpnBj0pleGEgIQQ+/fRT+Pj4QK1Wo23btoiNjTVYJzk5GX379oWjoyOcnZ0xaNAgpKenl+njexqNVoeZuy7ilUVHEHefb9okrd3nE9Fu5kF8GxMndSlEZea5Wh6k4urqCgcH05mw5fF6cnNz0a5dO6SmpmLjxo24ePEi1q5di1q1aiElJaVM64iJiUHt2rWxYcMG/PPPP3jzzTfRr18/bNmyxWA9R0dHxMfH63+uX79ucPuXX36JuXPnYtGiRTh69Cjs7OzQoUMHZGVl6dfp27cvzp49i99++w1btmzBwYMH8dZbb5Xp4yvM1Xvp6LEwBnP3XoZWxzNwZBoe5Wrx2S9nMfjbv5CckSN1OUSlrszCQ1xcHGQyGU6ePKlflpKSAplMhv379wPI+6Ysk8mwc+dO1K1bF2q1Gq1bt0ZiYiK2b9+OatWqwdHREX369EFm5r/fKAs7XTJ16lQMHDgQDg4OqFSpEpYsWWJQz5gxY1C1alXY2toiJCQE48ePR25ubqk81sfrOXv2LK5cuYIFCxagUaNGCAwMRNOmTTFlyhQ0atRIf5+bN2+iV69ecHZ2hqurK6KjoxEXF6e/XavVYuTIkXB2doabmxtGjx6N/v37F9ny88knn2Dy5Mlo0qQJKleujP/85z/o2LEjNm7caLCeTCaDt7e3/sfLy0t/mxACs2fPxrhx4xAdHY3atWvju+++w507d/StMOfPn8eOHTuwbNkyREVFoVmzZpg3bx7WrFmDO3fuPPfzWVLfH4lD57m/49St1HLbJ5Exdp9PxItzDiLmcpLUpRCVKpNoeZgwYQLmz5+PmJgY/Yfq7NmzsXr1amzduhW7du3CvHnzitzGjBkzUL9+fZw4cQJDhw7Fu+++i4sXL+pvd3BwwMqVK3Hu3DnMmTMHS5cuxaxZs0r9sXh4eEAul2P9+vXQarWFrpObm4sOHTrAwcEBhw4dwuHDh2Fvb4+OHTsiJydH/3hWrlyJ5cuX4/fff0dycjI2bdpkdD2pqalwdXU1WJaeno7AwEAEBAQgOjoaZ8+e1d927do1JCQkoG3btvplTk5OiIqKwpEjRwAAR44cgbOzM+rXr69fp23btpDL5Th69KjRNRor8WEWBqz4E+N/PotHuYU/x0Sm4m5aNl7/5iim77gAjZZ9ccg8mER4mDJlCpo2bYq6deti0KBBOHDgABYuXIi6deuiefPm6NmzJ/bt21fkNjp16oShQ4eiSpUqGDNmDNzd3Q3uM27cODRp0gRBQUHo0qULRo0ahZ9++qnY2l577TXY29sb/DzZj+Bxfn5+mDt3Lj799FO4uLigdevWmDx5Mq5evapfZ+3atdDpdFi2bBlq1aqFatWqYcWKFbhx44a+VWb27Nn4+OOP0b17d1SrVg2LFi2Ck5NTsfU+7qeffsJff/2FN998U78sLCwMy5cvx88//4wffvgBOp0OTZo0wa1btwAACQkJAGDQGpH/e/5tCQkJ8PQ0vGyxUqmEq6urfp2ysuNMAjrOPoT9HIJJFYhOAAv3X0GPRUdwg/1yyAyYRHioXbu2/v9eXl76UwuPL0tMTCzxNvKb5R+/z9q1a9G0aVN4e3vD3t4e48aNw40bN4qtbdasWTh58qTBT9euXYu8z3vvvYeEhASsWrUKjRs3xrp161CjRg389ttvAIBTp07h8uXLcHBw0AcSV1dXZGVl4cqVK0hNTUV8fDyioqL021QqlQbf9Iuzb98+vPnmm1i6dClq1KihX964cWP069cPERERaNmyJTZu3AgPDw8sXry4xNuWgkarw2c/n8E7PxzjOWSqsE7dTEGnuYew6cQtqUshei5lNqOJXJ6XSx6fRuJpfQysrKz0/5fJZAa/5y/T6Ypu7ivqPkeOHEHfvn0xceJEdOjQAU5OTlizZg1mzJhR7OPw9vZGlSpVDJY5ODgU2/nRwcEBXbp0QZcuXTBlyhR06NABU6ZMQbt27ZCeno7IyMhCWzA8PDyKrak4Bw4cQJcuXTBr1iz069evyHWtrKxQt25dXL58GUDe4wWAu3fvwsfHR7/e3bt3ERERoV/nyTCn0WiQnJysv39pSs7IwdBVx/DH1eRS3zZReUvP1uCDtadw6FISpnavBZWVQuqSiIxWZi0P+R+C8fHx+mWPd54sTzExMQgMDMTYsWNRv359hIaGFhhhUJZkMhnCw8ORkZEBAKhXrx5iY2Ph6emJKlWqGPw4OTnByckJPj4+Bv0HNBoNjh07Vuy+9u/fj86dO2P69OklGv2g1Wpx+vRpfVAIDg6Gt7c39uzZo18nLS0NR48eRePGjQHktV6kpKQY1LN3717odDqD1pLScO5OGrrO/53BgczOxhO30WvxEdxNyyp+ZSITU2bhQa1Wo1GjRpg2bRrOnz+PAwcOYNy4cWW1uyKFhobixo0bWLNmDa5cuYK5c+c+U+fDkjh58iSio6Oxfv16nDt3DpcvX8Y333yD5cuXIzo6GkDeMEd3d3dER0fj0KFDuHbtGvbv34/3339f3/fgP//5D6ZNm4bNmzfjwoULGDp0aLGtHfv27UPnzp3x/vvvo0ePHkhISEBCQgKSk//94J00aRJ27dqFq1ev4vjx43j99ddx/fp1DB48GEBe0BkxYgSmTJmCX375BadPn0a/fv3g6+urH+lRrVo1dOzYEUOGDMGff/6Jw4cPY9iwYejduzd8fX1L7bnc+k88eiyMwa0HvC4Fmad/bqUiev5hnLnNEUNUsZRpn4fly5dDo9EgMjJS/4Ekha5du+KDDz7AsGHDEBERgZiYGIwfP75M9uXv74+goCBMnDgRUVFRqFevHubMmYOJEydi7NixAABbW1scPHgQlSpV0neIHDRoELKysuDomHeBnQ8//BBvvPEG+vfvj8aNG8PBwQEvv/xykfv+9ttvkZmZiS+++AI+Pj76n+7du+vXefDgAYYMGYJq1aqhU6dOSEtLQ0xMDKpXr65fZ/To0Rg+fDjeeustNGjQAOnp6dixY4fBZFKrVq1CeHg42rRpg06dOqFZs2YFhsc+KyEEvtp5Ae+tPs7RFGT2EtKy8MqiI9hxJr74lYlMBK9tUYEMGDAAKSkphc56aS4eZuXig7Unsft80R1kicyNTAaMah+G916oUvzKRBIzidEWREDelTBfXhDD4EAWSQjgq50XMXLtSWRr2OJGpo3hgUzCqZsp6L4wBpcTpbk+BpGp2HjiNvouPYr76dlSl0L0VDxtQZL7PTYJb3//NzJy+G2LKJ+/ixrfD4pCsLud1KUQFcDwQJLadjoeI9acRA6n7SUqwMPBBqsHRyHUy3QuBEgEMDyQhH788wbGbjoNXgyT6Onc7Kzxw+AoVPNxlLoUIj2GB5LE8t+vYdKWc1KXQVQhONta4fuBUajlb9z1bYjKCsMDlbsF+y/jyx0Xi1+RiPQcVEp8N7Ah6lZykboUIoYHKl8zf7uEuXtipS6DqEKyt1FixZsN0CDIVepSyMIxPFC5mbHrIubtvSx1GUQVmq21Asv61UeTKu5Sl0IWjPM8ULn45vdrDA5EpSAzR4uB3/6FA5fuSV0KWTCGBypzm07cwpSt7BxJVFqycnV467u/8XccrzZL0mB4oDK170IiPlr3D3hyjKh0ZWt0GPzd35yVlSTB8EBl5tj1ZAxddRwaTuRAVCZSMnPRf/mfSEzLkroUsjAMD1QmLiY8xMCVf/OS2kRl7HbKI/Rf8RceZuVKXQpZEIYHKnU3kzPRb/lRpD7imxlReTgfn4Z3fziOXE7zTuWE4YFKVVJ6Nt745ijupvGKgETl6ffLSRi9/h9w9D2VB4YHKjVZuVoMXPkX4u5nSl0KkUXadOI2pu24IHUZZAEYHqjUjNt8Bv/cSpW6DCKLtvjAVaw8fE3qMsjMMTxQqfj+SBzWH7sldRlEBGDSlnM4fDlJ6jLIjDE80HM7dj2ZV8gkMiE6AfxnzQnc5RBOKiMMD/RcEtOy/tfLm520iExJUnoO3lt1HBqOwKAywPBAzyxXq8PQVceR+JAjK4hM0d/XH+CL7exASaWP4YGe2eQt5/D39QdSl0FERfjm92vYfjpe6jLIzDA80DNZf+wWvjtyXeoyiKgERq//B9eSMqQug8wIwwMZ7eydVIzddFrqMoiohB5ma/DuD8eQxeniqZQwPJBRsjVajFhzEtkadsIiqkguJDzE2E1npC6DzATDAxllxq5LiOUlgIkqpA3Hb+Gnv29KXQaZAYYHKrG/45Kx7NBVqcsgoucw6ddzuPWAU8jT82F4oBLJzNHgw3WnoON0DkQVWnq2hhfQoufG8EAl8sW2C7jOC14RmYWYK/fx/R8cLUXPjuGBivV7bBJ+OMo3GiJzMm37BVy/z+Gb9GwYHqhID7NyMXr9KbCFk8i8ZOZoMWYDT1/Qs2F4oCJN/PUc7qTy4jpE5uiPq8lY+xdHX5DxGB7oqfZdSORltonM3NRt55H4kF8QyDgMD1SoHI0OE349K3UZRFTG0rI0mPALX+tkHIYHKtQ3v1/j6AoiC7HtdAJ2n7srdRlUgTA8UAGJD7Pw9b7LUpdBROVo6rbzyNVy2nkqGYYHKuDLHReRnq2RugwiKkdXkzKwinM/UAkxPJCBf26lYMNxdpIkskRz9sQi9VGu1GVQBcDwQAYm/HKWczoQWagHmbk8ZUklwvBAeptP3MbxGylSl0FEEloZE4ebyewsTUVjeCAAeRe+mrb9gtRlEJHEcjQ6TN/B9wIqGsMDAQAW7r+ChDROFENEwJZ/4nH8xgOpyyATJhOc2NziPcjIQdPpe5GZo5W6lOdya+FAaNMSCyy3r9sZbu3f1f8uhEDiugnIunYMHi+PhW3Vxk/dZubFGDw8uR05CZehy3oInwFzYe0VYrBO8p6lyDizBzIrFZxb9od9jRf0t2Vc+B0ZZ/bAs+dnpfAIicpPvUrO2Di0qdRlkIlSSl0ASe+b369V+OAAAD79ZwG6f8ep5yRdR+LacbALN3wDfPj3z4CsZNvU5WbBxr86bMObIXnHvAK3Z14+iozzB+DZazI0D+7g/vY5UAfXg8LWCbrsDKQc/A5evac81+MiksLxGynY+k88Otf2kboUMkE8bWHh0rJy8e2ROKnLKBUKWyco7F30P48u/wmlsw9sAmrp18m5exVpf26C+4sjSrRN+5qt4dz0NaiDIgq9Pff+TagCasHGJxR21VtCZm0LTWreTH0P9q2AQ91OUDp6Pu9DI5LE7N2XeNVNKhTDg4VbeTgOD7PMb0Iooc1Fxrn9sK/dDjJZXjODLjcLSb9+Bdf270Jh71Iq+7H2CEZOwmVos9KRnXAZQpMNpYsvsm6dRc7dK3CI7FIq+yGSQmxiOvacL3gqkIinLSxYRrYGKw5fk7qMMpF56Q/ostJhV7ONftmDPctg41cNtqGNSm0/6pBI2NVohYRvP4BMaQ33zh9AbmWD5J0L4Nb5Azw8sQ0Pj2+BQu0I1w7DYO0RWGr7JioPCw9cQdvqXlKXQSaG4cGC/fDHdTzINM/Z5NL/2QV1SCSUDm4AgMzYo8i6cQo+A+aW+r6cm/WFc7O++t9Tfl8NVVAEZHIFUo+she/Ar/Ho8p+4v3UmfAbMKfX9E5WlY9cf4K+4ZDQIcpW6FDIhPG1hobJytVh6yDxbHTSpici6fgr2dTrol2VdPwXNgwTcnP0qrn/ZFde/7AoAuLf5CySs/m+p7Tv3/k1knNsH5+avI+vGaaj8a0Jh6wTb8ObIuXsFumxOvkMVz6L9V6QugUwMWx4s1I9/3kBSerbUZZSJ9NO/QWHrBHXlBvplTo1egX2d9gbrxS8fBpfWg6Gu0rBU9iuEwP2dX8Ol9WDIrdWA0EHo/tefJP9fwasWUsWz92IiLt19iKpeDlKXQiaCLQ8WKEejw5KDV6Uuo0wIoUP66d2wq9kGMrlCv1xh7wJrjyCDHwBQOnrAytlbv97tpe8g81KM/nfto4fIuXsVuUk3AAC5ybeQc/cqtOkFJ9BJP7UTCrUjbKtEAQBs/Koh6/o/yL59AWl//Qwrt0qQq+zL4mETlSkhgEUH2PpA/2LLgwXadOIW4lPNczbJrLiT0Kbdg33tds90f03yLYNTC48uH8X9bbP1vyf98iUAwKnpawb9HLQZD5B65Cd4v/6VfpmNbxgcG76MxPUTIbd1gnvnD56pJiJT8OupOxjVPgy+zmqpSyETwBkmLVCXeb/j9O1UqcsgogrmzaZB+KxLDanLIBPA0xYW5sztVAYHInoma/+6iVQzHaFFxmF4sDCr/7whdQlEVEFl5mix+eRtqcsgE8DwYEEyczT45eQdqcsgogps3bGbUpdAJoDhwYL8cvIO0rPNbypqIio/Z26n4dydNKnLIIkxPFgQnrIgotLA1gdieLAQZ26n4p9b7ChJRM/v55N3kKvlhGeWjOHBQvzIVgciKiXJGTnYfe6u1GWQhBgeLAA7ShJRaVt37JbUJZCEGB4swLbTCXjIjpJEVIoOXLqHxDTznKmWisfwYAG2n46XugQiMjNancDGE5zzwVIxPJi5jGwNDl1OkroMIjJD6/7mqAtLxfBg5vZfvIccDXtFE1Hpu3IvA5cTH0pdBkmA4cHM7TybIHUJRGTG9pxPlLoEkgDDgxnL0eiw7wJf2ERUdhgeLBPDgxmLuZLEURZEVKaO3XiAlMwcqcugcsbwYMZ2nuUkLkRUtrQ6gf0X70ldBpUzhgczpdMJ/MYZ4IioHOw+z/caS8PwYKaO33iApPRsqcsgIgtw8NI9aHitC4vC8GCmdrHVgYjKSVqWBn/GJUtdBpUjhgczdfASz0ESUfnZy1EXFoXhwQylZObg4l1O3EJE5WcPh4VbFIYHM/TH1WQIIXUVRGRJriVlID71kdRlUDlheDBDf1y9L3UJRGSBjl9PkboEKicMD2aI4YGIpHDixgOpS6BywvBgZlIf5bK/AxFJ4jjDg8VgeDAzJ248YH8HIpLEmTtpvIqvhWB4MDPHrzP5E5E0cjQ6nLmTKnUZVA4YHszM8RspUpdARBaMX2AsA8ODGdHpBE7eTJG6DCKyYCf4BcYiMDyYkSv30pHOS3ATkYTYadIyMDyYkdjEdKlLICILF5+ahYTULKnLoDLG8GBGYu8yPBCR9Hj61PwxPJiRy/cYHohIelf4XmT2GB7MSCwnhyIiExCXlCF1CVTGGB7MhE4ncI0vWCIyAXwvMn8MD2bi5oNMZHNmNyIyAXH3GR7MHcODmWBnSSIyFUnpOUjLypW6DCpDDA9mgp0liciUsN+DeWN4MBNseSAiU8J+D+aN4cFMsOWBiEwJw4N5Y3gwE3dSHkldAhGRHsODeWN4MANCCCRn5EhdBhGRHsODeWN4MAMPMnOh1QmpyyAi0ruTwutbmDOGBzOQlJ4tdQlERAZSH7E11JwxPJgBhgciMjW5WoH0bI3UZVAZYXgwA0npTPhEZHoesC+W2WJ4MAP32fJARCYo9RFnmTRXDA9mgKctiMgUPchky4O5YngwA/d52oKITNCDTLY8mCuGBzPAlgciMkUpbHkwWwwPZoATRBGRKUphy4PZYngwA9kandQlEBEVwD4P5ovhwQxwdkkiMkVseTBfDA9mQMPwQEQmKIetomaL4cEMsOWBiEwR35vMF8ODGdDomO6JyPSwVdR8MTyYAa2WL1AiMj06wfcmc8XwYAaY7onIFPG0hflSSl0APT+meyottRzT0b7GIfymTYAAjyt6Pr6utQE0lLoMKgMMD2aALQ9UWoJUjzD8xPcICX8Bn+vu4mFuutQlUQUW4OgldQlURnjawgywzwOVFg+rLABA5wv7sC4pHXWdqkhcEVVkCplC6hKojDA8mAOZ1AWQuXBTZun/75d8AytOHcBQp1r8EKBnopDzuDFXDA9mwMGGZ5+odLgqsgx+Vwgt3j25FStzneBnyyZoMo5cxo8Yc8W/rBmwVzE8UOlwlj8qdHnEzZNYf+UiXnKpWc4VUUXGFivzxfBgBhxUVlKXQGbCUVZ4eAAA+6w0fHF8G6bZVIa9lV05VkUVlR2PE7PF8GAGHNjyQKXEARnFrtP5wj6sT8pgZ0oqlrONs9QlUBlheDAD9uzzQKXEHpklWo+dKakkGB7MF8ODGeBpCyotal3xLQ/52JmSiuOscpa6BCojDA9mwJGnLaiUqLTGTwrFzpT0NC42LlKXQGWE4cEM8LQFlRYbzbPNKMnOlFQYtjyYL4YHM8AOk1RalJqHz3X//M6UEY6VS6kiqsjY8mC+GB7MAPs8UGlR5jxfeADyOlOu/OcgO1MSWx7MGMODGfBwsJG6BDITsuy0UtnOv50pndmZ0kIpZUo4WjtKXQaVEYYHMxDgait1CWQG7JRayLTZpbrNiJsnsP7KRXRmZ0qL42jD4GDOGB7MgJ+zGnJeHIuek69NTpls1z4rDdOOb8MXNlXYmdKCsL+DeWN4MAPWSjm8HVVSl0EVnLdN6bY6POmlC3vZmdKCuKvdpS6ByhDDg5nw56kLek6eVmUbHgB2prQkQU5BUpdAZYjhwUxUYnig5+ReDuEBYGdKSxHsFCx1CVSGGB7MRIALwwM9HzdlVrnuj50pzVuwI8ODOWN4MBOV3NRSl0AVnIu8ZBfFKk3sTGm+2PJg3jg1oZlgywM9L2d5+bY8PO6lC3sR4VoJHwdUxsm0K5LV8TTaR1okbkxE2vE0aNI0UAWq4NPHB7YhT3/d3d99H8l7kpGTlAMrNyt4dPGAS9N/RyCkn0nHne/vQJOqgUNdB/gN8oNcmfd9TpupxZWJVxD0URCs3a3L/PGVNrVSDW87b6nLoDLElgczwbke6Hk5yh5Jun///3WmfNexpsl1pry94jbSz6bD/y1/VJlSBfY17BH3VRxyH+QWuv79vfdxd/1deHbzROjnofDs5on47+ORdiJvEi6hE7i5+CZcX3BFyPgQZMVl4cH+B/r73113F64vuFbI4AAAQY5BkMk4ftycMTyYCU8HG6itTOsNlyoWezzbRbFKk0JoMfTUNpPqTKnL0SHt7zR49/KGXZgdbLxs4PWyF6w9rZG8N7nQ+6TEpMC1lSucopxg7WkN50bOcGnpgqRtSQAAbboW2odauLZ2hcpPBYe6Dsi+k9dhNTM2E5nXMuHW3q3cHmNp40gL88fwYCZkMhmq+ThIXQZVYHai/Ps8PI0pdaYUWgHoAJm14TdpubUcGZcyCr9ProDMquD6j64+gtAIKBwUUDorkX42HbpsHTIuZUAVoILQCNz57g78BvhBVoFnfmN/B/PH8GBGavs7S10CVWBqXeEfhFIxlc6UCrUC6ipqJP6ciNwHuRA6gZSYFGRezoQmVVPofexr2ePBwQd4FPcIQgg8uvYIDw48gNAKaNI1kMlkCBgagHu/3EPs2FioK6nh0twF97beg124HWRWMlydchWX/nsJ93ffL+dH/PwYHswfO0yakdr+TlKXQBWYSiv9aYvCmEJnSv+3/HH7m9u4+MFFQA6oA9VwauSErLjCO5l6dvWEJlWDK5OvAAJQOirh3MwZSduS9H0B7KraofJn/862mZ2QjZSYFFSeWBnXvrgGt3ZucKjtgNixsbALs4MqoOLMIsthmuaP4cGMMDzQ87DWmGZ4AP7XmfLBbSyu0xFL0s5BK7Tlun8bTxuEfBwCXbYO2kdaWDlb4caCG7DysCp0fbm1HP6D/OHX3w+aNA2Uzkok70+GXCWHwqHwvkl3Vt6Bd29vQABZ17Pg1MAJchs57MLskHEho8KEB4VMwT4PFoCnLcxIiLs97G2YB+nZKHMfSl1CkRRCi6Ent2KFhJ0p5TZyWDlbQZuhRfrpdDjWK/rKkTKlDFauVpDJZUg9mgqHCIdC+zIkH0iGwk4Bx7qOgC5vmdAK/b9CJ0r9sZSVqi5VYaOwkboMKmMMD2ZELpehhi8vg0vPRmHi4SFf3ZsnsO7KJXQqx86UD08/xMN/HiLnXg7Sz6Tj2rRrsPGxgUuzvHkbEtYl4NaSW/r1809BZCdkI/NqJm4uuInsW9nw6lEw9GjSNLj36z34vO4DAFDYKWDja4P7u+4j83ImMs5nwDa04gzFjvSKlLoEKgf8mmpm6gQ44+i1woePERVFlp0mdQkl5pCViunHt6F5eGt8rotHem7ZdvbUPdIhYV0CNA80eS0E9R3h1cMLMmVeK4ImRYOc+/9e0lzoBJJ2JCE7IRsyhQx24XYIGRcCa4+C8zbEr4qHe0d3WLn8ewrEb7Afbi+9jfu/3Yf7i+5FTkZlaup51ZO6BCoHMiFExWkPo2L9euoOhv94QuoyqIJxs87FMXl/qct4JrdcK+G/AZVxygRnprRE+3vth5u64s5RQSXD0xZmpg6Ha9Iz8LbJKX4lE+WffAPf/nMQ7/Iy35ILdAxkcLAQDA9mppKbLZxtC+8BTvQ0XtYVNzwAptGZkoB6njxlYSkYHsxQ/UBXqUugCsbTWrqLYpUmKTpT0r/Y38FyMDyYoZZV3aUugSoYd2W21CWUmvzOlFNtKvMy3+WMLQ+Wg+HBDLUK85S6BKpgXJXSXlGzLHS5sA/rkjJQx7Fy8SvTc3NXu6OSYyWpy6BywvBghgJcbRHszm9cVHIucvMLDwA7U5YntjpYFoYHM9WyqofUJVAF4mSm4QEw7Ezpq2arXFlhfwfLwvBgplqGMTxQyTnKzDc85Kt78wTWX41lZ8oy0syvmdQlUDlieDBTjUPcYKPkn5dKxl6Y1uW4y4q+M6VK2st8m5tgp2AEOgZKXQaVI366mCmVlQINgzlkk0rGzkLCQ74u5/eyM2UpahXQSuoSqJwxPJgx9nugklLpLCs8AP+7zPfpQ3iHnSmfW+uA1lKXQOWM4cGMtWK/ByohG0261CVIQqnT4D12pnwuripX1PaoXWrba9WqFUaMGKH/PSgoCLNnzy617Zd0v6YgLi4OMpkMJ0+elLqUAhgezFgVTwcEuKqlLoMqAGtNxbgcd1nJ70z5IjtTGq1VQCvIZc/+UTJgwAB069at9Ap6Rhs3bsTkyZPLfD8ymQwymQx//PGHwfLs7Gy4ublBJpNh//79AICAgADEx8ejZs1/j8tNmzahUaNGcHJygoODA2rUqCFJ6GF4MHMv1faVugSqAJS5lh0egLzOlF+yM6XR2ge2l7qEUuHq6goHB4dy2VdAQABWrFhhsGzTpk2wt7c3WKZQKODt7Q2lUgkA2LNnD1599VX06NEDf/75J44dO4bPP/8cubm55VL34xgezFzXOgwPVDxFDsNDPnamLDlnG2dE+USV2/4Ka8ZPSUkx+La+f/9+yGQy7Ny5E3Xr1oVarUbr1q2RmJiI7du3o1q1anB0dESfPn2QmZmp305hp0umTp2KgQMHwsHBAZUqVcKSJUsM6hkzZgyqVq0KW1tbhISEYPz48SX6IO/fvz/WrFmDR4/+HSK9fPly9O/fv8jH++uvv6Jp06b46KOPEBYWhqpVq6Jbt274+uuvDe73888/o169elCpVAgJCcHEiROh0Wj0t8fGxqJFixZQqVSoXr06fvvtN8hkMmzevLnY2vMxPJi5aj6OqOplX/yKZLHkMh2QzfDwOHamLJk2ldpAKVdKXUahJkyYgPnz5yMmJgY3b95Er169MHv2bKxevRpbt27Frl27MG/evCK3MWPGDNSvXx8nTpzA0KFD8e677+LixYv62x0cHLBy5UqcO3cOc+bMwdKlSzFr1qxia4uMjERQUBA2bNgAALhx4wYOHjyIN954o8j7eXt74+zZszhz5sxT1zl06BD69euH//znPzh37hwWL16MlStX4vPPPwcA6HQ6dO/eHdbW1jh69CgWLVqEMWPGFFvzkxgeLABbH6goXjYayCCkLsPk5HemXK5xYWfKp2gfZLqnLKZMmYKmTZuibt26GDRoEA4cOICFCxeibt26aN68OXr27Il9+/YVuY1OnTph6NChqFKlCsaMGQN3d3eD+4wbNw5NmjRBUFAQunTpglGjRuGnn34qUX0DBw7E8uXLAQArV65Ep06d4OFRdCf34cOHo0GDBqhVqxaCgoLQu3dvLF++HNnZ/17YbuLEifjvf/+L/v37IyQkBO3atcPkyZOxePFiAMDu3btx4cIFfPfdd6hTpw5atGiBqVOnlqjmxzE8WICudfykLoFMmI9NjtQlmLR6N46zM2UhXGxcEOVdfqcsjFW79r8jQLy8vPSnFh5flpiYWOJtyGQyeHt7G9xn7dq1aNq0Kby9vWFvb49x48bhxo0bJarv9ddfx5EjR3D16lWsXLkSAwcOLPY+dnZ22Lp1Ky5fvoxx48bB3t4eH374IRo2bKg/BXPq1ClMmjQJ9vb2+p8hQ4YgPj4emZmZOH/+PAICAuDr+++XysaNG5eo5scxPFiASm62aBjECaOocJ7W5nM57rLyeGdKO6Wt1OWYhK6Vu0IhL99TOnJ53keWEP+2lD2tj4GVlZX+/zKZzOD3/GU6na7I/RV1nyNHjqBv377o1KkTtmzZghMnTmDs2LHIySlZGHdzc8NLL72EQYMGISsrCy+++GKJ7gcAlStXxuDBg7Fs2TIcP34c586dw9q1awEA6enpmDhxIk6ePKn/OX36NGJjY6FSqUq8j+KY5skqKnU9I/3xZ1yy1GWQCfKwypK6hAqjy/m9iHALxMf+lXEq7YrU5UhGBhl6hfUq9/3mN+vHx8ejbt26ACDZHAgxMTEIDAzE2LFj9cuuX79u1DYGDhyITp06YcyYMVAoni2IBQUFwdbWFhkZeRO91atXDxcvXkSVKlUKXb9atWq4efMm4uPj4ePjAwAFho2WBMODhehc2wcTfj2LzByt1KWQiXFXsuXBGAH3r2Plg9tYXLsDlqadg1ZY3msqyicKlRwrlft+1Wo1GjVqhGnTpiE4OBiJiYkYN25cudcBAKGhobhx4wbWrFmDBg0aYOvWrdi0aZNR2+jYsSPu3bsHR0fHEq0/YcIEZGZmolOnTggMDERKSgrmzp2L3NxctGvXDgDw6aef4qWXXkKlSpXQs2dPyOVynDp1CmfOnMGUKVPQtm1bVK1aFf3798dXX32FtLQ0gwBUUjxtYSHsbJToWNNb6jLIBLkqzP+KmqXN0jtTvhr2qmT7Xr58OTQaDSIjIzFixAhMmTJFkjq6du2KDz74AMOGDUNERARiYmIwfvx4o7Yhk8ng7u4Oa2vrEq3fsmVLXL16Ff369UN4eDhefPFFJCQkYNeuXQgLCwMAdOjQAVu2bMGuXbvQoEEDNGrUCLNmzUJgYN6Fy+RyOTZt2oRHjx6hYcOGGDx4sH4khlG1i8dPHpFZ++PqffReYnzzFJm3eZX/RpfbM6Uuo8J6qHLC5OpNsf3B04fPmRNPtSd29txpskM06dnIZDJs2rSpxLN9suXBgjQKcUM1n5I1j5HlcJKz5eF5WFpnyu5VuzM4EMODpRnULFjqEsjEOMgyi1+JitXl/F6sS36E2mY8M6VCpkCP0B5Sl0EmgOHBwnSt4wtPBxupyyATYi8YHkpLwP3r+Pb0IbxtpjNTtvBvAW879p0yR0IIoy5QxvBgYayVcvRvEiR1GWRCbHWWeTnusqLUaTDMTDtTSjE8k0wTw4MFej0qELbW5vetiJ6NSpchdQlmydxmpvS390dT36ZSl0EmguHBAjnZWqFnpL/UZZCJsNGw5aGsmFNnyt7hvSGTyaQug0wEw4OFGtg0GHK+DxAAKw2vqFnWKnpnSjeVG09ZkAGGBwsV5G6HttW8pC6DTIAyh+GhPFTkzpRv1nwTaqVa6jLIhDA8WLAhLUKKX4nMnpzhodxUxM6UbHWgwjA8WLAGQa6oV8lZ6jJIQjZyHWS57DBZ3ipSZ0q2OlBhGB4s3OiO4VKXQBLytinZ5YOp9FWEzpTuandJr2NBpovhwcI1CnFDqzAPqcsgiTA8SM+UO1MOrDkQKqVK6jLIBDE8EMZ0DOfICwvlac3LcZuC/M6UbznVglxmGm/L7mp3vFL1FanLIBNlGkcpSaqajyOiI/ykLoMk4GGVJXUJ9D9KnQbDT27Fco2bSXSmHFRzEFsd6KkYHggA8GH7qrBW8nCwNO5KhgdTE3njmOSdKT3UHngljK0O9HT8tCAAgL+LLV6PCpS6DCpnLgqGB1OU35nyc1WoJJ0pB9caDBsFL6BHT8fwQHrDW1eBg41S6jKoHDnLH0ldAhWh6/k9WJechdqO5TcnS6hLKOd1oGIxPJCei5013m7JiaMsiZOMl+M2dQH34/Dt6d/LrTPl2KixUMr5JYKKxvBABgY1C4GnA5srLYUDw0OF8HhnSh912Q2t7hLSBZFekWW2fTIfDA9kQG2twNjO1aQug8qJnSi78HDwugZdfsyE74yHkE1Mw+YLuQXWOX9Pi64/ZsJpWhrspqahwdJ03EjVPXWbZxO16PFTJoJm521z9h8Fh5qu+icXAbMewmV6GkbuNOzTEZeiQ9V56UjLFs//ACUQeeMY1l+7jI4uNUp92w5WDhhZf2Spb5fME8MDFRAd4YeWVTlxlCVQ68ructwZOQJ1vOT4ulPhw/2uJOvQbEUmwt3l2N/fDv+8Y4/xLWygKqLFPDMXCHGWY1pbFbztC05OkpSpw+BfH+H/2qmw63U7/PBPLrZc+je0DN2ahWltbeBoU3EnNnF8lIqvjm8v9c6U79V9D+5q91LbHpk3ntiiQn3+ck20n3UQmTlaqUuhMqTSlt11LV4MtcKLoVb/+61gx8yxe7PQKVSJL9v9Gy4quxb9faaBnwIN/PKuSPnf3QVHilx9IOBkI8OrNfP2+0KwAufv6fBSVeDH07mwUgDdq1kVuF9F1PX8HtR1C8J//UPwT9rV59pWuGs4eof1LqXKyBKw5YEK5e9ii5HtqkpdBpUxG03ZtTwURScEtsZqUNVVjg4/ZMDzq4eIWpZe6KkNY4S6ypGZK3AiXovkRwJ/3daitpcCDx4JjN+XhfkvmtekR6XRmVIGGcZGjYVCXrEuE07SYnigp3qzaTBq+ztJXQaVIaVGmstxJ2YIpOcA0w5no2NlJXa9YYuXw63Qfe0jHIjTPPN2XdQyfNtNjX6bH6Hh0nT0q2OFDlWUGLUrC8MaWuNaig51F6ej5oJ0rD/3fEHFVDxvZ8roKtGI8Iwo/cLIrPG0BT2VQi7DF91rIXr+YWh0FbODGRVNmZMmyX7zD6foMCU+aJw3uifCW4GYm1osOpaDlkHP/tb0cjUrvPzYqYkDcRr8k6jFvE4qVJmbjh97qOFtL0PDZRloEaiAp515fIeKvHEM69VOmFytCXY8OFui+zhaO+KDyA/KuDIyR+bxqqEyU8PXCYOaBUtdBpURWbY0LQ/utjIo5UB1D8Om8mructxILb2gmq0RGLotC4tfUuNysg4aHdAySIkwdwWquslx9JZ59enJ70w5RRUK2xJ0phwROQKuKtdyqIzMDcMDFeuDdlVRybX8p8ilsmWn1EKmleaqmtYKGRr4KnDxvuGwzEvJOgQ6ld5IiCkH806L1PNRQKuDQQtarhbQmmmDWvT5PVhfzMyUzf2a86qZ9MwYHqhYKisFpr5cS+oyqJT52ZRtcEjPETiZoMXJhLxv99ce6HAyQaufx+GjJtZYeyYXS4/l4HKyDvP/zMGvFzUY2sBav41+mx7h48dGVeRo/91mjha4nZb3++XkgnNDnLunxdqzGkx6Ie+0SLi7HHKZDN8cz8HWS7m4kKRDA1/z7SRYVGdKFxsXTGo6SaLKyBzIhBBmmr2ptH328xl8e+S61GVQKWnhmoLvMoeW2fb3x2nwwrcFJ6HqX8cKK7upAQDLT+Tgi99zcCtNhzA3OSa2skF0+L/9FVqtzECQs1y/flyKDsFzCo4QaRmowP4BdvrfhRBoviIT/21mjZeq/ru9LZdy8d62LGRrgCmtbTC4nnWBbZmjY5Ui8bE9EP/oHgBgdqvZaBPYRuKqqCJjeKASy9Zo0X1BDM7ekaaTHZWuHl53MSOVneUsRdr/OlNau1bG580+l7ocquB42oJKzEapwPw+9WDPK2+aBXcrafo7kDQcH6Xiq2sXMKHBx1KXQmaA4YGMEuxuh89fril1GVQK3JS8HLdFkVsBPb+BlY291JWQGWB4IKNFR/ihd4MAqcug5+QqLzi9M5mxNp8CfrxiJpUOhgd6JhO61kCYl4PUZdBzcJKz5cFiVG4DNBkudRVkRhge6JmorBT4um9dqK3Md6ibuXOUld3luMmEOAcCPZYBsop7JVEyPQwP9MyqeDpgYnQNqcugZ+SAsruiJpkIKzvgtR8BW84iSaWL4YGeS6/6AehRz1/qMugZ2Aq2PJg3GfDyIsCLAZ9KH8MDPbep3WuiYRC/2VQ0ah1bHsxay9FA9a5SV0FmiuGBnpuNUoEl/SIR4m5X/MpkMlRaaS6KReUg/CWgFedzoLLD8EClwtnWGssHNICrnWVM92sOrDVseTBLntWBlxezgySVKYYHKjVB7nZY8kYkrJU8rCoCZS5bHsyO2hXovRrgRFBUxvguT6WqfpAr/u+VOvzSUwEocniNErOiVAGv/gC4BktdCVkAhgcqdV3r+GJU+zCpy6BiyHLY8mA25ErglW+BoKZSV0IWguGBysR7L1RBr/ocwmmq3KxzIdNppC6DSoUMiF4AhHWUuhCyIAwPVGY+f7kWmoe6S10GFcLbJkfqEqi0dJwG1HlV6irIwjA8UJmxUsix5I36aBTCOSBMjZc1L8dtFlqOARq9I3UVZIEYHqhMqa0VWDGgIaKCGSBMiSfDQ8XX8C3ghU+kroIsFMMDlTm1tQIr32SAMCXuSoaHCq3WK8CLX0pdBVkwhgcqF2prBVa82QANGSBMgpuCl+OusGr2BLot4iRQJCmGByo3ttZKrGSAMAkuSoaHCqleP6D7UkChlLoSsnAMD1Su9AGCF9KSlKOM4aHCiXoX6DIXkPNtm6THo5DKna21EisHMkBIieGhgmk+CnhxGk9VkMlgeCBJ2ForseLNBpwHQiL2ghfFqjDaTgDajJe6CiIDDA8kGTsbJVYMaIBX6wdIXYrFsWN4qABkQKf/A5p9IHUhRAUwPJCklAo5pvesjVHtq7JFthypdAwPJk1hDXRbCDQcInUlRIVieCCTMKx1KGa/GgFrBQ/J8qDS8KJYJkvtCryxGYh4TepKiJ6K79RkMqIj/PD9oIZwtrWSuhSzZ6VJl7oEKox7GDBkL6+OSSaP4YFMSlSIGza82wSVXG2lLsWsKXPZ8mByKrcBBv8GuAZLXQlRsRgeyORU9rDHpqFNEBHgLHUpZkuRw/BgUhq+DfRdB6icpK6EqEQYHsgkudnbYM1bjRAd4St1KWZHLtMB2QwPJkGuBDrPADp9CcgVUldDVGIMD2SyVFYKzOldF5Oja7AjZSnystFABiF1GWTnAby+AWgwWOpKiIzGd2QyeW80DsK6dxrDz1ktdSlmwccmR+oSKLgl8M5hIKSV1JUQPROGB6oQ6gQ4Y+v7zdAm3FPqUio8L+ssqUuwXDIF0Hpc3lBMBy+pqyF6ZgwPVGE421rjmwEN8OlL1Xka4zl4WLHlQRKO/sCb24AWH/HiVlTh8QimCmdgs2Bseq8JQjzspC6lQnJTsuWh3IV1Bt45BFRqJHUlRKWC4YEqpBq+TtgyvBmvi/EMXBW8oma5UdgAL34JvLYasOVVZMl8MDxQhWVrrcT0nrWx8s0G7ExpBGc5w0O58G8IvH0QiHpb6kqISh3DA1V4rcI88dvIFhjYNBhyXlyrWE4MD2XL2j6vtWHgTsAzXOpqiMoEwwOZBVtrJT7tUh2bhjZFuLeD1OWYNAdZptQlmK8q7YChf+S1NrBTJJkxHt1kVuoEOGPL8Gb4qEMYbJQ8vAtjL3g57lJn6wZ0Xwq8vh5wZj8cMn98dyWzo1TI8d4LVbBjRAs0CmEntSfZ6hgeSlWtV4D3/gJq95K6EqJyw/BAZivY3Q4/DmmE6T1qwc3OWupyTIaK4aF0+EQA/bcAPZYBdm5SV0NUrmRCCE5yT2YvPVuDxQeu4JvfryEzRyt1OZI6E/B/sL93XOoyKi5HP6DNp0DtVwEZe+iSZWJ4IIuS+DALc3bHYu1fN6HRWeahf9HnM9g8iJW6jIrH2gFoNgJo/B5gxaHBZNkYHsgiXb2Xjq92XsT2MwlSl1LurriNhCLD8h73M5MpgHr9gBc+Aex5bRUigOGBLNyJGw/wxfYL+PNastSllJtrDkMgy2W/h+LJgLBOeacoOF8DkQGGByIAey/cxVc7L+F8fJrUpZQpG7kOF61fl7oMEycDqnfNu4CVdy2piyEySQwPRI85FHsPSw9dw8FL96QupUwEqbOwXwyUugzTJFMANV4GWowCPKtJXQ2RSVNKXQCRKWke6oHmoR64mPAQyw5dxc8n7yBHq5O6rFLjZZMD8KKahpRqoO7rQJNhgEuQ1NUQVQhseSAqQmJaFr49EodVR28gJTNX6nKeWxfPe5iX9h+pyzAN9l5A5ACg4VuAnbvU1RBVKAwPRCXwKEeLdcdu4pvfr+H6/Yp7bYiBfjfx6f0xUpchIRkQ0gqo/2ZeZ0iFldQFEVVIPG1BVAJqawX6NQ7C61GBOBB7DxuP38Zv5xKQlVuxTmm4Ky30nIWdJ1C3L1CvP+AaLHU1RBUewwOREeRyGV4I88QLYZ54mJWLbafjsfH4bfwZl4yK0IbnorCk8CADglvktTKEv8RWBqJSxPBA9IwcVFZ4tUElvNqgEm49yMSm47ex6cRtXE0y3TkUnOUV95RLiflFAtWjgerdAJdAqashMkvs80BUyk7ceIBNJ25j2+l4JKXnSF2OgdWh+9Hk5hKpyyhlMsC/wf8CQzQviU1UDhgeiMqIEAKnb6di/8V72HcxEadupkDqy2n8WnUbat34QdoiSoUMCIgCanQDqnUFnPwkqaJVq1aIiIjA7NmzAQBBQUEYMWIERowYUa77lZqp1UNlj5fkJiojMpkMtf2d8X6bUGwa2hTHxrXDnN4R6F7XD+720lwi3E5U4NMWLsF5Qyt7rgA+ugwM2gk0erdcg8OAAQPQrVu3ctvf02zcuBGTJ08u8/3IZDJs3ry5wPInn4cn67l27Rr69OkDX19fqFQq+Pv7Izo6GhcuXCjzmvNdvnwZDg4OcHZ2LnDbunXrEB4eDpVKhVq1amHbtm0Gtwsh8Omnn8LHxwdqtRpt27ZFbKzhxeSSk5PRt29fODo6wtnZGYMGDUJ6enpZPiSTwj4PROXExc4a0RF+iI7wM2iVOHjpHk7fTkW2puxHbqh1FejNzd4rr8NjcEsgpCXgXEnqikyGq6ur1CUYeLye3NxctGvXDmFhYdi4cSN8fHxw69YtbN++HSkpKeVST25uLl577TU0b94cMTExBrfFxMTgtddewxdffIGXXnoJq1evRrdu3XD8+HHUrFkTAPDll19i7ty5+PbbbxEcHIzx48ejQ4cOOHfuHFQqFQCgb9++iI+Px2+//Ybc3Fy8+eabeOutt7B69epyeYxSY8sDkQQeb5VY/24TnJ3YAVuGN8PUl2uhd4MAhHs7QCGXlfp+VVoT7cypsAa8awN13wA6zwCG/gGMugT0WAbUe6NCBoe4uDjIZDKcPHlSvywlJQUymQz79+8HAOzfvx8ymQw7d+5E3bp1oVar0bp1ayQmJmL79u2oVq0aHB0d0adPH2Rm/ttq1KpVK4NTI0FBQZg6dSoGDhwIBwcHVKpUCUuWGPZtGTNmDKpWrQpbW1uEhIRg/PjxyM0tnYnPHq/n7NmzuHLlChYsWIBGjRohMDAQTZs2xZQpU9CoUSP9fW7evIlevXrB2dkZrq6uiI6ORlxcnP52rVaLkSNHwtnZGW5ubhg9ejT69+9fopafcePGITw8HL169Spw25w5c9CxY0d89NFHqFatGiZPnox69eph/vz5APJaHWbPno1x48YhOjoatWvXxnfffYc7d+7oW2HOnz+PHTt2YNmyZYiKikKzZs0wb948rFmzBnfu3Hnm57EiYXggMgFKhRw1/ZzQJ6oSpvWojR0jWuDMhA5Y/05jjOtcDV3r+CLIzRay58wTNhoTaHlQqgG/+kD9QUCXucBbB4CPbwPvHAKi5wMNBlvctSUmTJiA+fPnIyYmRv+hOnv2bKxevRpbt27Frl27MG/evCK3MWPGDNSvXx8nTpzA0KFD8e677+LixYv62x0cHLBy5UqcO3cOc+bMwdKlSzFr1qxSfyweHh6Qy+VYv349tFptoevk5uaiQ4cOcHBwwKFDh3D48GHY29ujY8eOyMnJ0T+elStXYvny5fj999+RnJyMTZs2Fbv/vXv3Yt26dfj6668Lvf3IkSNo27atwbIOHTrgyJEjAPJOuSQkJBis4+TkhKioKP06R44cgbOzM+rXr69fp23btpDL5Th69GixNZoDnrYgMlFqawXqB7miftC/TcJZuVrcTM7Ejcd+biZn4vr9TNx8kFnspFXK3HK6aqiNI+AcmDdU0iXof/8PyvtxqwzIFeVTRwUxZcoUNG3aFAAwaNAgfPzxx7hy5QpCQkIAAD179sS+ffswZszTZwft1KkThg4dCiCvlWHWrFnYt28fwsLCAOR9G88XFBSEUaNGYc2aNRg9enSRtb322mtQKAz/XtnZ2ejcuXOh6/v5+WHu3LkYPXo0Jk6ciPr16+OFF15A37599Y9n7dq10Ol0WLZsGWT/S8QrVqyAs7Mz9u/fj/bt22P27Nn4+OOP0b17dwDAokWLsHPnziJrvX//PgYMGIAffvgBjo6Oha6TkJAALy8vg2VeXl5ISEjQ356/rKh1PD09DW5XKpVwdXXVr2PuGB6IKhCVlQKhXg4I9XIo9PbEtKy8QPEgE/fTc/AgMwcpmblIeZSLlMwcyJSBgFIJ5KQDORl5/4r8wCFDXtNG/r+PLVOqAJUzoHb637/OgNrl3/+rnAFbt7zTCy5BgK1pnZM3dbVr19b/38vLS39q4fFlf/75Z4m3IZPJ4O3tjcTERP2ytWvXYu7cubhy5QrS09Oh0Wie+gH7uFmzZhX4pj5mzJintioAwHvvvYd+/fph//79+OOPP7Bu3TpMnToVv/zyC9q1a4dTp07pOzQ+LisrC1euXEFqairi4+MRFRWlv02pVKJ+/fooaoDgkCFD0KdPH7Ro0aLYx0XPh+GByIx4Oqrg6agyaK0w9HO51mPJ5PK8s8KPf9g9rY+BldW/s1/KZDKD3/OX6XRFtyoVdZ8jR46gb9++mDhxIjp06AAnJyesWbMGM2bMKPZxeHt7o0qVKgbLHBwciu386ODggC5duqBLly6YMmUKOnTogClTpqBdu3ZIT09HZGQkVq1aVeB+Hh4exdb0NHv37sUvv/yC//u//wOQ99zrdDoolUosWbIEAwcOhLe3N+7evWtwv7t378Lb21v/ePOX+fj4GKwTERGhX+fxYAYAGo0GycnJ+vubO/Z5ICIqA/kfgvHx8fplj3eeLE8xMTEIDAzE2LFjUb9+fYSGhuL69evltn+ZTIbw8HBkZOR12K1Xrx5iY2Ph6emJKlWqGPw4OTnByckJPj4+Bv0HNBoNjh07VuR+jhw5gpMnT+p/Jk2aBAcHB5w8eRIvv/wyAKBx48bYs2ePwf1+++03NG7cGAAQHBwMb29vg3XS0tJw9OhR/TqNGzdGSkqKQT179+6FTqczaC0xZ2x5ICIqA2q1Go0aNcK0adMQHByMxMREg34H5Sk0NBQ3btzAmjVr0KBBA2zdurVEnQ+fxcmTJ/HZZ5/hjTfeQPXq1WFtbY0DBw5g+fLl+j4bffv2xVdffYXo6GhMmjQJ/v7+uH79OjZu3IjRo0fD398f//nPfzBt2jSEhoYiPDwcM2fOLLa1o1o1w462f//9N+RyuX4IJgD85z//QcuWLTFjxgx07twZa9aswd9//60fnSKTyTBixAhMmTIFoaGh+qGavr6++pEe1apVQ8eOHTFkyBAsWrQIubm5GDZsGHr37g1fX9/SezJNGFseiIjKyPLly6HRaBAZGan/QJJC165d8cEHH2DYsGGIiIhATEwMxo8fXyb78vf3R1BQECZOnIioqCjUq1cPc+bMwcSJEzF27FgAgK2tLQ4ePIhKlSqhe/fuqFatGgYNGoSsrCx9P4wPP/wQb7zxBvr374/GjRvDwcFB33rwPJo0aYLVq1djyZIlqFOnDtavX4/NmzcbBIzRo0dj+PDheOutt9CgQQOkp6djx44d+jkeAGDVqlUIDw9HmzZt0KlTJzRr1qzA8FhzxumpiYioQhgwYABSUlIKnfWSyhdbHoiIiMgoDA9ERERkFJ62ICIiIqOw5YGIiIiMwvBARERERmF4ICIiIqMwPBAREZFRGB6IiIjIKAwPREREZBSGByIiIjIKwwMREREZheGBiIiIjMLwQEREREZheCAiIiKjMDwQERGRURgeiIiIyCgMD0RERGQUhgciIiIyCsMDERERGYXhgYiIiIzC8EBERERGYXggIiIiozA8EBERkVEYHoiIiMgoDA9ERERkFIYHIiIiMgrDAxERERmF4YGIiIiMwvBARERERmF4ICIiIqMwPBAREZFRGB6IiIjIKAwPREREZBSGByIiIjIKwwMREREZheGBiIiIjMLwQEREREZheCAiIiKjMDwQERGRURgeiIiIyCgMD0RERGQUhgciIiIyyv8Dk5OtjWyjuKsAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"analyses.groupby('attributes.instrument-model').size().plot(kind='pie', autopct='%1.1f%%')\n",
"plt.title('Percentages of analysed samples by instrument type');"
@@ -587,328 +353,12 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"id": "0fee9320-4354-47ce-afbc-e44b2ef09c50",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " type | \n",
- " id | \n",
- " attributes.accession | \n",
- " attributes.analysis-status | \n",
- " attributes.experiment-type | \n",
- " attributes.pipeline-version | \n",
- " attributes.is-private | \n",
- " attributes.complete-time | \n",
- " attributes.instrument-platform | \n",
- " attributes.instrument-model | \n",
- " relationships.sample.data.id | \n",
- " relationships.sample.data.type | \n",
- " relationships.run.data.id | \n",
- " relationships.run.data.type | \n",
- " relationships.study.data.id | \n",
- " relationships.study.data.type | \n",
- " Submitted nucleotide sequences | \n",
- " Nucleotide sequences after format-specific filtering | \n",
- " Nucleotide sequences after length filtering | \n",
- " Nucleotide sequences after undetermined bases filtering | \n",
- " Predicted SSU sequences | \n",
- " Predicted LSU sequences | \n",
- " Reads with predicted CDS | \n",
- " Reads with predicted RNA | \n",
- " Reads with InterProScan match | \n",
- " Predicted CDS | \n",
- " Predicted CDS with InterProScan match | \n",
- " Total InterProScan matches | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " analysis-jobs | \n",
- " MGYA00585242 | \n",
- " MGYA00585242 | \n",
- " completed | \n",
- " amplicon | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:20:39 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 2500 | \n",
- " ERS1871389 | \n",
- " samples | \n",
- " ERR2098577 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 1474912 | \n",
- " 335618 | \n",
- " 335618 | \n",
- " 335618 | \n",
- " 335119 | \n",
- " 0 | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " analysis-jobs | \n",
- " MGYA00585243 | \n",
- " MGYA00585243 | \n",
- " completed | \n",
- " amplicon | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:22:00 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 2500 | \n",
- " ERS1871409 | \n",
- " samples | \n",
- " ERR2098437 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 1178982 | \n",
- " 1060738 | \n",
- " 1060738 | \n",
- " 1060738 | \n",
- " 1049588 | \n",
- " 0 | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " analysis-jobs | \n",
- " MGYA00585244 | \n",
- " MGYA00585244 | \n",
- " completed | \n",
- " amplicon | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:24:06 | \n",
- " ILLUMINA | \n",
- " Illumina MiSeq | \n",
- " ERS1871427 | \n",
- " samples | \n",
- " ERR2098500 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 2285192 | \n",
- " 772970 | \n",
- " 772970 | \n",
- " 772970 | \n",
- " 772662 | \n",
- " 3 | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " analysis-jobs | \n",
- " MGYA00585245 | \n",
- " MGYA00585245 | \n",
- " completed | \n",
- " amplicon | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:25:40 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 2500 | \n",
- " ERS1871411 | \n",
- " samples | \n",
- " ERR2098439 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 1863283 | \n",
- " 1679669 | \n",
- " 1679669 | \n",
- " 1679669 | \n",
- " 1674242 | \n",
- " 0 | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " analysis-jobs | \n",
- " MGYA00585246 | \n",
- " MGYA00585246 | \n",
- " completed | \n",
- " amplicon | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:27:22 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 2500 | \n",
- " ERS1871430 | \n",
- " samples | \n",
- " ERR2098450 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 1244024 | \n",
- " 1110539 | \n",
- " 1110539 | \n",
- " 1110539 | \n",
- " 1107011 | \n",
- " 0 | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " type id attributes.accession \\\n",
- "0 analysis-jobs MGYA00585242 MGYA00585242 \n",
- "1 analysis-jobs MGYA00585243 MGYA00585243 \n",
- "2 analysis-jobs MGYA00585244 MGYA00585244 \n",
- "3 analysis-jobs MGYA00585245 MGYA00585245 \n",
- "4 analysis-jobs MGYA00585246 MGYA00585246 \n",
- "\n",
- " attributes.analysis-status attributes.experiment-type \\\n",
- "0 completed amplicon \n",
- "1 completed amplicon \n",
- "2 completed amplicon \n",
- "3 completed amplicon \n",
- "4 completed amplicon \n",
- "\n",
- " attributes.pipeline-version attributes.is-private attributes.complete-time \\\n",
- "0 5.0 False 2021-07-23T09:20:39 \n",
- "1 5.0 False 2021-07-23T09:22:00 \n",
- "2 5.0 False 2021-07-23T09:24:06 \n",
- "3 5.0 False 2021-07-23T09:25:40 \n",
- "4 5.0 False 2021-07-23T09:27:22 \n",
- "\n",
- " attributes.instrument-platform attributes.instrument-model \\\n",
- "0 ILLUMINA Illumina HiSeq 2500 \n",
- "1 ILLUMINA Illumina HiSeq 2500 \n",
- "2 ILLUMINA Illumina MiSeq \n",
- "3 ILLUMINA Illumina HiSeq 2500 \n",
- "4 ILLUMINA Illumina HiSeq 2500 \n",
- "\n",
- " relationships.sample.data.id relationships.sample.data.type \\\n",
- "0 ERS1871389 samples \n",
- "1 ERS1871409 samples \n",
- "2 ERS1871427 samples \n",
- "3 ERS1871411 samples \n",
- "4 ERS1871430 samples \n",
- "\n",
- " relationships.run.data.id relationships.run.data.type \\\n",
- "0 ERR2098577 runs \n",
- "1 ERR2098437 runs \n",
- "2 ERR2098500 runs \n",
- "3 ERR2098439 runs \n",
- "4 ERR2098450 runs \n",
- "\n",
- " relationships.study.data.id relationships.study.data.type \\\n",
- "0 MGYS00001935 studies \n",
- "1 MGYS00001935 studies \n",
- "2 MGYS00001935 studies \n",
- "3 MGYS00001935 studies \n",
- "4 MGYS00001935 studies \n",
- "\n",
- " Submitted nucleotide sequences \\\n",
- "0 1474912 \n",
- "1 1178982 \n",
- "2 2285192 \n",
- "3 1863283 \n",
- "4 1244024 \n",
- "\n",
- " Nucleotide sequences after format-specific filtering \\\n",
- "0 335618 \n",
- "1 1060738 \n",
- "2 772970 \n",
- "3 1679669 \n",
- "4 1110539 \n",
- "\n",
- " Nucleotide sequences after length filtering \\\n",
- "0 335618 \n",
- "1 1060738 \n",
- "2 772970 \n",
- "3 1679669 \n",
- "4 1110539 \n",
- "\n",
- " Nucleotide sequences after undetermined bases filtering \\\n",
- "0 335618 \n",
- "1 1060738 \n",
- "2 772970 \n",
- "3 1679669 \n",
- "4 1110539 \n",
- "\n",
- " Predicted SSU sequences Predicted LSU sequences Reads with predicted CDS \\\n",
- "0 335119 0 N/A \n",
- "1 1049588 0 N/A \n",
- "2 772662 3 N/A \n",
- "3 1674242 0 N/A \n",
- "4 1107011 0 N/A \n",
- "\n",
- " Reads with predicted RNA Reads with InterProScan match Predicted CDS \\\n",
- "0 N/A N/A N/A \n",
- "1 N/A N/A N/A \n",
- "2 N/A N/A N/A \n",
- "3 N/A N/A N/A \n",
- "4 N/A N/A N/A \n",
- "\n",
- " Predicted CDS with InterProScan match Total InterProScan matches \n",
- "0 N/A N/A \n",
- "1 N/A N/A \n",
- "2 N/A N/A \n",
- "3 N/A N/A \n",
- "4 N/A N/A "
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# Save all possible JSON keys into a list \"all_keys\"\n",
"all_keys = [\n",
@@ -961,601 +411,12 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"id": "e1a219d6-26e5-4e7e-8c6c-571cb32ea9d6",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " type | \n",
- " id | \n",
- " attributes.accession | \n",
- " attributes.analysis-status | \n",
- " attributes.experiment-type | \n",
- " attributes.pipeline-version | \n",
- " attributes.is-private | \n",
- " attributes.complete-time | \n",
- " attributes.instrument-platform | \n",
- " attributes.instrument-model | \n",
- " relationships.sample.data.id | \n",
- " relationships.sample.data.type | \n",
- " relationships.run.data.id | \n",
- " relationships.run.data.type | \n",
- " relationships.study.data.id | \n",
- " relationships.study.data.type | \n",
- " Submitted nucleotide sequences | \n",
- " Nucleotide sequences after format-specific filtering | \n",
- " Nucleotide sequences after length filtering | \n",
- " Nucleotide sequences after undetermined bases filtering | \n",
- " Predicted SSU sequences | \n",
- " Predicted LSU sequences | \n",
- " Reads with predicted CDS | \n",
- " Reads with predicted RNA | \n",
- " Reads with InterProScan match | \n",
- " Predicted CDS | \n",
- " Predicted CDS with InterProScan match | \n",
- " Total InterProScan matches | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 2 | \n",
- " analysis-jobs | \n",
- " MGYA00585244 | \n",
- " MGYA00585244 | \n",
- " completed | \n",
- " amplicon | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:24:06 | \n",
- " ILLUMINA | \n",
- " Illumina MiSeq | \n",
- " ERS1871427 | \n",
- " samples | \n",
- " ERR2098500 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 2285192 | \n",
- " 772970 | \n",
- " 772970 | \n",
- " 772970 | \n",
- " 772662 | \n",
- " 3 | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- "
\n",
- " \n",
- " 12 | \n",
- " analysis-jobs | \n",
- " MGYA00585254 | \n",
- " MGYA00585254 | \n",
- " completed | \n",
- " amplicon | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:39:02 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 2500 | \n",
- " ERS1871398 | \n",
- " samples | \n",
- " ERR2098533 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 994953 | \n",
- " 757022 | \n",
- " 757022 | \n",
- " 757022 | \n",
- " 755379 | \n",
- " 3 | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- "
\n",
- " \n",
- " 13 | \n",
- " analysis-jobs | \n",
- " MGYA00585255 | \n",
- " MGYA00585255 | \n",
- " completed | \n",
- " amplicon | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T09:40:50 | \n",
- " ILLUMINA | \n",
- " Illumina MiSeq | \n",
- " ERS1996201 | \n",
- " samples | \n",
- " ERR2196988 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 670174 | \n",
- " 478699 | \n",
- " 478699 | \n",
- " 478699 | \n",
- " 472895 | \n",
- " 5 | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- "
\n",
- " \n",
- " 17 | \n",
- " analysis-jobs | \n",
- " MGYA00585259 | \n",
- " MGYA00585259 | \n",
- " completed | \n",
- " amplicon | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T14:15:40 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 2500 | \n",
- " ERS1871471 | \n",
- " samples | \n",
- " ERR2098506 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 1323302 | \n",
- " 765789 | \n",
- " 765789 | \n",
- " 765789 | \n",
- " 764645 | \n",
- " 5 | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- "
\n",
- " \n",
- " 21 | \n",
- " analysis-jobs | \n",
- " MGYA00585263 | \n",
- " MGYA00585263 | \n",
- " completed | \n",
- " amplicon | \n",
- " 5.0 | \n",
- " False | \n",
- " 2021-07-23T14:22:58 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 2500 | \n",
- " ERS1871374 | \n",
- " samples | \n",
- " ERR2098570 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 1110577 | \n",
- " 590505 | \n",
- " 590505 | \n",
- " 590505 | \n",
- " 589230 | \n",
- " 1 | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- " N/A | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 243 | \n",
- " analysis-jobs | \n",
- " MGYA00608340 | \n",
- " MGYA00608340 | \n",
- " completed | \n",
- " metagenomic | \n",
- " 5.0 | \n",
- " False | \n",
- " 2022-09-20T11:01:47 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 4000 | \n",
- " ERS1871393 | \n",
- " samples | \n",
- " ERR2098379 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 62248568 | \n",
- " 25722964 | \n",
- " 25722964 | \n",
- " 25722964 | \n",
- " 21509 | \n",
- " 39264 | \n",
- " 25040753 | \n",
- " 83388 | \n",
- " 12776564 | \n",
- " 25730026 | \n",
- " 12822303 | \n",
- " 22748978 | \n",
- "
\n",
- " \n",
- " 244 | \n",
- " analysis-jobs | \n",
- " MGYA00608341 | \n",
- " MGYA00608341 | \n",
- " completed | \n",
- " metagenomic | \n",
- " 5.0 | \n",
- " False | \n",
- " 2022-09-20T11:03:41 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 4000 | \n",
- " ERS1871423 | \n",
- " samples | \n",
- " ERR2098403 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 64768750 | \n",
- " 30469803 | \n",
- " 30469803 | \n",
- " 30469803 | \n",
- " 18363 | \n",
- " 31760 | \n",
- " 28024481 | \n",
- " 62320 | \n",
- " 6244999 | \n",
- " 28646835 | \n",
- " 6258524 | \n",
- " 10588518 | \n",
- "
\n",
- " \n",
- " 245 | \n",
- " analysis-jobs | \n",
- " MGYA00608342 | \n",
- " MGYA00608342 | \n",
- " completed | \n",
- " metagenomic | \n",
- " 5.0 | \n",
- " False | \n",
- " 2022-09-20T11:05:20 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 4000 | \n",
- " ERS1871373 | \n",
- " samples | \n",
- " ERR2098367 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 51217703 | \n",
- " 24766186 | \n",
- " 24766186 | \n",
- " 24766186 | \n",
- " 21370 | \n",
- " 38041 | \n",
- " 23518432 | \n",
- " 76618 | \n",
- " 9443549 | \n",
- " 24051747 | \n",
- " 9468683 | \n",
- " 16474824 | \n",
- "
\n",
- " \n",
- " 246 | \n",
- " analysis-jobs | \n",
- " MGYA00608343 | \n",
- " MGYA00608343 | \n",
- " completed | \n",
- " metagenomic | \n",
- " 5.0 | \n",
- " False | \n",
- " 2022-09-20T11:07:02 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 4000 | \n",
- " ERS1871401 | \n",
- " samples | \n",
- " ERR2098385 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 49633529 | \n",
- " 23913778 | \n",
- " 23913778 | \n",
- " 23913778 | \n",
- " 34631 | \n",
- " 52285 | \n",
- " 19997664 | \n",
- " 98831 | \n",
- " 2645285 | \n",
- " 20608046 | \n",
- " 2649968 | \n",
- " 4440764 | \n",
- "
\n",
- " \n",
- " 247 | \n",
- " analysis-jobs | \n",
- " MGYA00608344 | \n",
- " MGYA00608344 | \n",
- " completed | \n",
- " metagenomic | \n",
- " 5.0 | \n",
- " False | \n",
- " 2022-09-20T11:08:51 | \n",
- " ILLUMINA | \n",
- " Illumina HiSeq 4000 | \n",
- " ERS1871374 | \n",
- " samples | \n",
- " ERR2098368 | \n",
- " runs | \n",
- " MGYS00001935 | \n",
- " studies | \n",
- " 62556828 | \n",
- " 32656692 | \n",
- " 32656692 | \n",
- " 32656692 | \n",
- " 30276 | \n",
- " 53113 | \n",
- " 31171698 | \n",
- " 107374 | \n",
- " 13136590 | \n",
- " 31875576 | \n",
- " 13171653 | \n",
- " 22950127 | \n",
- "
\n",
- " \n",
- "
\n",
- "
108 rows × 28 columns
\n",
- "
"
- ],
- "text/plain": [
- " type id attributes.accession \\\n",
- "2 analysis-jobs MGYA00585244 MGYA00585244 \n",
- "12 analysis-jobs MGYA00585254 MGYA00585254 \n",
- "13 analysis-jobs MGYA00585255 MGYA00585255 \n",
- "17 analysis-jobs MGYA00585259 MGYA00585259 \n",
- "21 analysis-jobs MGYA00585263 MGYA00585263 \n",
- ".. ... ... ... \n",
- "243 analysis-jobs MGYA00608340 MGYA00608340 \n",
- "244 analysis-jobs MGYA00608341 MGYA00608341 \n",
- "245 analysis-jobs MGYA00608342 MGYA00608342 \n",
- "246 analysis-jobs MGYA00608343 MGYA00608343 \n",
- "247 analysis-jobs MGYA00608344 MGYA00608344 \n",
- "\n",
- " attributes.analysis-status attributes.experiment-type \\\n",
- "2 completed amplicon \n",
- "12 completed amplicon \n",
- "13 completed amplicon \n",
- "17 completed amplicon \n",
- "21 completed amplicon \n",
- ".. ... ... \n",
- "243 completed metagenomic \n",
- "244 completed metagenomic \n",
- "245 completed metagenomic \n",
- "246 completed metagenomic \n",
- "247 completed metagenomic \n",
- "\n",
- " attributes.pipeline-version attributes.is-private \\\n",
- "2 5.0 False \n",
- "12 5.0 False \n",
- "13 5.0 False \n",
- "17 5.0 False \n",
- "21 5.0 False \n",
- ".. ... ... \n",
- "243 5.0 False \n",
- "244 5.0 False \n",
- "245 5.0 False \n",
- "246 5.0 False \n",
- "247 5.0 False \n",
- "\n",
- " attributes.complete-time attributes.instrument-platform \\\n",
- "2 2021-07-23T09:24:06 ILLUMINA \n",
- "12 2021-07-23T09:39:02 ILLUMINA \n",
- "13 2021-07-23T09:40:50 ILLUMINA \n",
- "17 2021-07-23T14:15:40 ILLUMINA \n",
- "21 2021-07-23T14:22:58 ILLUMINA \n",
- ".. ... ... \n",
- "243 2022-09-20T11:01:47 ILLUMINA \n",
- "244 2022-09-20T11:03:41 ILLUMINA \n",
- "245 2022-09-20T11:05:20 ILLUMINA \n",
- "246 2022-09-20T11:07:02 ILLUMINA \n",
- "247 2022-09-20T11:08:51 ILLUMINA \n",
- "\n",
- " attributes.instrument-model relationships.sample.data.id \\\n",
- "2 Illumina MiSeq ERS1871427 \n",
- "12 Illumina HiSeq 2500 ERS1871398 \n",
- "13 Illumina MiSeq ERS1996201 \n",
- "17 Illumina HiSeq 2500 ERS1871471 \n",
- "21 Illumina HiSeq 2500 ERS1871374 \n",
- ".. ... ... \n",
- "243 Illumina HiSeq 4000 ERS1871393 \n",
- "244 Illumina HiSeq 4000 ERS1871423 \n",
- "245 Illumina HiSeq 4000 ERS1871373 \n",
- "246 Illumina HiSeq 4000 ERS1871401 \n",
- "247 Illumina HiSeq 4000 ERS1871374 \n",
- "\n",
- " relationships.sample.data.type relationships.run.data.id \\\n",
- "2 samples ERR2098500 \n",
- "12 samples ERR2098533 \n",
- "13 samples ERR2196988 \n",
- "17 samples ERR2098506 \n",
- "21 samples ERR2098570 \n",
- ".. ... ... \n",
- "243 samples ERR2098379 \n",
- "244 samples ERR2098403 \n",
- "245 samples ERR2098367 \n",
- "246 samples ERR2098385 \n",
- "247 samples ERR2098368 \n",
- "\n",
- " relationships.run.data.type relationships.study.data.id \\\n",
- "2 runs MGYS00001935 \n",
- "12 runs MGYS00001935 \n",
- "13 runs MGYS00001935 \n",
- "17 runs MGYS00001935 \n",
- "21 runs MGYS00001935 \n",
- ".. ... ... \n",
- "243 runs MGYS00001935 \n",
- "244 runs MGYS00001935 \n",
- "245 runs MGYS00001935 \n",
- "246 runs MGYS00001935 \n",
- "247 runs MGYS00001935 \n",
- "\n",
- " relationships.study.data.type Submitted nucleotide sequences \\\n",
- "2 studies 2285192 \n",
- "12 studies 994953 \n",
- "13 studies 670174 \n",
- "17 studies 1323302 \n",
- "21 studies 1110577 \n",
- ".. ... ... \n",
- "243 studies 62248568 \n",
- "244 studies 64768750 \n",
- "245 studies 51217703 \n",
- "246 studies 49633529 \n",
- "247 studies 62556828 \n",
- "\n",
- " Nucleotide sequences after format-specific filtering \\\n",
- "2 772970 \n",
- "12 757022 \n",
- "13 478699 \n",
- "17 765789 \n",
- "21 590505 \n",
- ".. ... \n",
- "243 25722964 \n",
- "244 30469803 \n",
- "245 24766186 \n",
- "246 23913778 \n",
- "247 32656692 \n",
- "\n",
- " Nucleotide sequences after length filtering \\\n",
- "2 772970 \n",
- "12 757022 \n",
- "13 478699 \n",
- "17 765789 \n",
- "21 590505 \n",
- ".. ... \n",
- "243 25722964 \n",
- "244 30469803 \n",
- "245 24766186 \n",
- "246 23913778 \n",
- "247 32656692 \n",
- "\n",
- " Nucleotide sequences after undetermined bases filtering \\\n",
- "2 772970 \n",
- "12 757022 \n",
- "13 478699 \n",
- "17 765789 \n",
- "21 590505 \n",
- ".. ... \n",
- "243 25722964 \n",
- "244 30469803 \n",
- "245 24766186 \n",
- "246 23913778 \n",
- "247 32656692 \n",
- "\n",
- " Predicted SSU sequences Predicted LSU sequences Reads with predicted CDS \\\n",
- "2 772662 3 N/A \n",
- "12 755379 3 N/A \n",
- "13 472895 5 N/A \n",
- "17 764645 5 N/A \n",
- "21 589230 1 N/A \n",
- ".. ... ... ... \n",
- "243 21509 39264 25040753 \n",
- "244 18363 31760 28024481 \n",
- "245 21370 38041 23518432 \n",
- "246 34631 52285 19997664 \n",
- "247 30276 53113 31171698 \n",
- "\n",
- " Reads with predicted RNA Reads with InterProScan match Predicted CDS \\\n",
- "2 N/A N/A N/A \n",
- "12 N/A N/A N/A \n",
- "13 N/A N/A N/A \n",
- "17 N/A N/A N/A \n",
- "21 N/A N/A N/A \n",
- ".. ... ... ... \n",
- "243 83388 12776564 25730026 \n",
- "244 62320 6244999 28646835 \n",
- "245 76618 9443549 24051747 \n",
- "246 98831 2645285 20608046 \n",
- "247 107374 13136590 31875576 \n",
- "\n",
- " Predicted CDS with InterProScan match Total InterProScan matches \n",
- "2 N/A N/A \n",
- "12 N/A N/A \n",
- "13 N/A N/A \n",
- "17 N/A N/A \n",
- "21 N/A N/A \n",
- ".. ... ... \n",
- "243 12822303 22748978 \n",
- "244 6258524 10588518 \n",
- "245 9468683 16474824 \n",
- "246 2649968 4440764 \n",
- "247 13171653 22950127 \n",
- "\n",
- "[108 rows x 28 columns]"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# Create a new dataframe called filtered_analyses which will include all lines from the\n",
"# transformed_analyses dataframe except for the ones where the value in the \"Predicted LSU sequences\"\n",
@@ -1583,23 +444,12 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"id": "6e0210f7-d788-48a7-b327-2763b8183bbb",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "108"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"filtered_analyses.shape[0]"
]
@@ -1634,35 +484,12 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"id": "269794af-c4c8-49c3-a832-8c0ce8a5241b",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "Files available for analysis MGYA00585242:\n",
- "ERR2098577_MERGED_FASTQ.fasta.gz: Processed nucleotide reads\n",
- "ERR2098577_MERGED_FASTQ_SSU.fasta.gz: Reads encoding SSU rRNA\n",
- "ERR2098577_MERGED_FASTQ_SSU_MAPSeq.mseq.gz: MAPseq SSU assignments\n",
- "ERR2098577_MERGED_FASTQ_SSU_OTU.tsv: OTUs, counts and taxonomic assignments for SSU rRNA\n",
- "ERR2098577_MERGED_FASTQ_SSU_OTU_TABLE_HDF5.biom: OTUs, counts and taxonomic assignments for SSU rRNA\n",
- "ERR2098577_MERGED_FASTQ_SSU_OTU_TABLE_JSON.biom: OTUs, counts and taxonomic assignments for SSU rRNA\n",
- "\n",
- "Files available for analysis MGYA00585243:\n",
- "ERR2098437_MERGED_FASTQ.fasta.gz: Processed nucleotide reads\n",
- "ERR2098437_MERGED_FASTQ_SSU.fasta.gz: Reads encoding SSU rRNA\n",
- "ERR2098437_MERGED_FASTQ_SSU_MAPSeq.mseq.gz: MAPseq SSU assignments\n",
- "ERR2098437_MERGED_FASTQ_SSU_OTU.tsv: OTUs, counts and taxonomic assignments for SSU rRNA\n",
- "ERR2098437_MERGED_FASTQ_SSU_OTU_TABLE_HDF5.biom: OTUs, counts and taxonomic assignments for SSU rRNA\n",
- "ERR2098437_MERGED_FASTQ_SSU_OTU_TABLE_JSON.biom: OTUs, counts and taxonomic assignments for SSU rRNA\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"with APISession(\"https://www.ebi.ac.uk/metagenomics/api/v1\") as session:\n",
" for analysisId in analyses.head(2)['attributes.accession']:\n",
@@ -2123,7 +950,7 @@
"novel_prevotella_df = resources_df[resources_df['attributes.taxon-lineage'] == 'd__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Prevotella;s__']\n",
"# Plot the catalogues\n",
"novel_prevotella_df.groupby('relationships.catalogue.data.id').size().plot(kind='pie', autopct='%1.0f%%')\n",
- "plt.title('Catalogues where the novel Prevotella species are found');"
+ "plt.title('Catalogues where the novel Prevotella species are found');\n"
]
},
{