-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathevaluation.py
280 lines (231 loc) · 9.82 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import multiprocessing
import metrics
import torch
from tqdm import tqdm
Ks = [1, 5, 10, 20, 40, 50, 60, 70, 80, 90, 100]
def eval_one_user(x):
result = {'precision': np.zeros(len(Ks)), 'recall': np.zeros(len(Ks)), 'ndcg': np.zeros(len(Ks)),
'hit_ratio': np.zeros(len(Ks)), 'auc': 0., 'mrr': 0.}
preds = np.transpose(x[0])
pos_label = np.ones(1)
num_preditems = x[1]
uit = x[2]
rec_items = x[3]
num_neg_sample_items = x[4]
num_candidate_items = x[5]
labels = np.zeros(num_preditems)
labels[0] = 1
scaler = MinMaxScaler()
posterior = np.transpose(scaler.fit_transform(np.transpose([preds])))[0]
r = []
rankeditems = np.argsort(-preds)[:max(Ks)]
for i in rankeditems:
if i == 0:
r.append(1)
else:
r.append(0)
if num_neg_sample_items != -1:
r = rank_corrected(np.array(r), num_preditems, num_candidate_items)
precision, recall, ndcg, hit_ratio = [], [], [], []
for K in Ks:
precision.append(metrics.precision_at_k(r, K))
recall.append(metrics.recall_at_k(r, K, 1))
ndcg.append(metrics.ndcg_at_k(r, K))
hit_ratio.append(metrics.hit_at_k(r, K))
auc = metrics.auc(ground_truth=labels, prediction=posterior)
mrr = metrics.mrr(r)
result['precision'] += precision
result['recall'] += recall
result['ndcg'] += ndcg
result['hit_ratio'] += hit_ratio
result['auc'] += auc
result['mrr'] += mrr
return (result, rankeditems[:max(Ks)], uit, rec_items)
def rank_corrected(r, m, n):
pos_ranks = np.argwhere(r==1)[:,0]
corrected_r = np.zeros_like(r)
for each_sample_rank in list(pos_ranks):
corrected_rank = int(np.floor(((n-1)*each_sample_rank)/m))
if corrected_rank >= len(corrected_r) - 1:
continue
corrected_r[corrected_rank] = 1
assert sum(corrected_r) <= 1
return corrected_r
def eval_users(tgrec, src, dst, ts, train_src, train_dst, args):
result = {'precision': np.zeros(len(Ks)), 'recall': np.zeros(len(Ks)), 'ndcg': np.zeros(len(Ks)),
'hit_ratio': np.zeros(len(Ks)), 'auc': 0., 'mrr': 0.}
cores = multiprocessing.cpu_count() // 2
userset = set(src)
train_itemset = set(train_dst)
pos_edges = {}
for u, i, t in zip(src, dst, ts):
if i not in train_itemset:
continue
if u in pos_edges:
pos_edges[u].add((i, t))
else:
pos_edges[u] = set([(i, t)])
train_pos_edges = {}
for u, i in zip(train_src, train_dst):
if u in train_pos_edges:
train_pos_edges[u].add(i)
else:
train_pos_edges[u] = set([i])
pool = multiprocessing.Pool(cores)
batch_users = 5
preds_list = []
preds_len_preditems = []
preds_uit = []
preds_rec_items = []
preds_sampled_neg = []
preds_num_candidates = []
test_outputs = []
num_interactions = 0
num_test_instances = 0
with torch.no_grad():
tgrec = tgrec.eval()
batch_src_l = []
batch_test_items = []
batch_ts = []
#batch_len = []
batch_i = 0
for u, i, t in zip(src, dst, ts):
num_test_instances += 1
if u not in train_src or i not in train_itemset or u not in pos_edges:
continue
num_interactions += 1
batch_i += 1
pos_items = [i]
pos_ts = [t]
src_l = [u for _ in range(len(pos_items))]
pos_label = np.ones(len(pos_items))
interacted_dst = train_pos_edges[u]
neg_candidates = list(train_itemset - set(pos_items) - interacted_dst)
if args.negsampleeval == -1:
neg_items = neg_candidates
else:
neg_items = list(np.random.choice(neg_candidates, size=args.negsampleeval, replace=False))
#neg_items = list(train_itemset - set(pos_items))
neg_ts = [t for _ in range(len(neg_items))]
neg_src_l = [u for _ in range(len(neg_items))]
batch_src_l += src_l + neg_src_l
batch_test_items += pos_items + neg_items
batch_ts += pos_ts + neg_ts
#batch_len.append(len(src_l+neg_src_l))
test_items = np.array(batch_test_items)
test_ts = np.array(batch_ts)
test_src_l = np.array(batch_src_l)
pred_scores = tgrec(test_src_l, test_items, test_ts, args.n_degree)
preds = pred_scores.cpu().numpy()
#start_ind = 0
#for i_len in batch_len:
preds_list.append(preds)
preds_len_preditems.append(len(src_l+neg_src_l))
preds_uit.append((u,i,t))
rec_items = []
rec_items += pos_items + neg_items
preds_rec_items.append(rec_items)
preds_sampled_neg.append(args.negsampleeval)
preds_num_candidates.append(len(pos_items+neg_candidates))
#start_ind = i_len
batch_src_l = []
batch_test_items = []
batch_ts = []
#batch_len = []
if len(preds_list) % batch_users == 0 or num_test_instances == len(ts):
batchset_predictions = zip(preds_list, preds_len_preditems, preds_uit, preds_rec_items, preds_sampled_neg, preds_num_candidates)
batch_preds = pool.map(eval_one_user, batchset_predictions)
for oneresult in batch_preds:
re = oneresult[0]
result['precision'] += re['precision']
result['recall'] += re['recall']
result['ndcg'] += re['ndcg']
result['hit_ratio'] += re['hit_ratio']
result['auc'] += re['auc']
result['mrr'] += re['mrr']
uit = oneresult[2]
pred_rank_list = oneresult[1]
rec_items = oneresult[3]
one_pred_result = {"u_ind": int(uit[0]), "u_pos_gd": int(uit[1]), "timestamp": float(uit[2])}
one_pred_result["predicted"] = [int(rec_items[int(rec_ind)]) for rec_ind in pred_rank_list]
test_outputs.append(one_pred_result)
preds_list = []
preds_len_preditems = []
preds_uit = []
preds_rec_items = []
preds_sampled_neg = []
preds_num_candidates = []
batch_src_l = []
batch_test_items = []
batch_ts = []
#batch_len = []
#pred_prob = pred_scores.sigmoid()
#neg_label = np.zeros(len(neg_items))
#preds = pred_scores.cpu().numpy()
#preds_list.append(preds)
#preds_len_preditems.append(len(neg_items)+1)
#scaler = MinMaxScaler()
#posterior = np.transpose(scaler.fit_transform(np.transpose([preds])))[0]
#posterior = -np.sort(-posterior)
##posterior = pred_prob.cpu().numpy()
#labels = np.concatenate([pos_label, neg_label])
#r = []
#rankeditems = list((-preds).argsort())
#for i in rankeditems:
# if i == 0:
# r.append(1)
# else:
# r.append(0)
#precision, recall, ndcg, hit_ratio = [], [], [], []
#for K in Ks:
# precision.append(metrics.precision_at_k(r, K))
# recall.append(metrics.recall_at_k(r, K, len(pos_items)))
# ndcg.append(metrics.ndcg_at_k(r, K))
# hit_ratio.append(metrics.hit_at_k(r, K))
#auc = metrics.auc(ground_truth=r, prediction=posterior)
#mrr = metrics.mrr(r)
#result['precision'] += precision
#result['recall'] += recall
#result['ndcg'] += ndcg
#result['hit_ratio'] += hit_ratio
#result['auc'] += auc
#result['mrr'] += mrr
result['precision'] /= num_interactions
result['recall'] /= num_interactions
result['ndcg'] /= num_interactions
result['hit_ratio'] /= num_interactions
result['auc'] /= num_interactions
result['mrr'] /= num_interactions
print('num_interactions: ', num_interactions)
return result, test_outputs
def eval_one_epoch(hint, tgrec, sampler, src, dst, ts, label):
val_acc, val_ap, val_f1, val_auc = [], [], [], []
with torch.no_grad():
tgrec = tgrec.eval()
TEST_BATCH_SIZE=1024
num_test_instance = len(src)
num_test_batch = math.ceil(num_test_instance / TEST_BATCH_SIZE)
for k in range(num_test_batch):
# percent = 100 * k / num_test_batch
# if k % int(0.2 * num_test_batch) == 0:
# logger.info('{0} progress: {1:10.4f}'.format(hint, percent))
s_idx = k * TEST_BATCH_SIZE
e_idx = min(num_test_instance - 1, s_idx + TEST_BATCH_SIZE)
src_l_cut = src[s_idx:e_idx]
dst_l_cut = dst[s_idx:e_idx]
ts_l_cut = ts[s_idx:e_idx]
# label_l_cut = label[s_idx:e_idx]
size = len(src_l_cut)
dst_l_fake = sampler.sample_neg(src_l_cut)
pos_prob, neg_prob = tgrec.contrast(src_l_cut, dst_l_cut, dst_l_fake, ts_l_cut, NUM_NEIGHBORS)
pred_score = np.concatenate([(pos_prob).cpu().numpy(), (neg_prob).cpu().numpy()])
pred_label = pred_score > 0.5
true_label = np.concatenate([np.ones(size), np.zeros(size)])
val_acc.append((pred_label == true_label).mean())
val_ap.append(average_precision_score(true_label, pred_score))
val_f1.append(f1_score(true_label, pred_label))
val_auc.append(roc_auc_score(true_label, pred_score))
return np.mean(val_acc), np.mean(val_ap), np.mean(val_f1), np.mean(val_auc)