-
Notifications
You must be signed in to change notification settings - Fork 1
/
output_00001_00000_01037.txt
3308 lines (3308 loc) · 151 KB
/
output_00001_00000_01037.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Fri Jul 27 08:36:52 2018: [PE_1]:inet_listen_socket_setup:inet_setup_listen_socket: bind failed port 1371 listen_sock = 80 Address already in use
Fri Jul 27 08:36:52 2018: [PE_1]:_pmi_inet_listen_socket_setup:socket setup failed
Fri Jul 27 08:36:52 2018: [PE_1]:_pmi_init:_pmi_inet_listen_socket_setup (full) returned -1
I0727 08:36:52.487265 11582 caffe.cpp:197] Using GPUs 0
I0727 08:36:52.488200 11582 caffe.cpp:202] GPU 0: Tesla K20X
I0727 08:36:55.363672 11582 solver.cpp:48] Initializing solver from parameters:
test_iter: 200
test_interval: 50000
base_lr: 0.02
display: 100
max_iter: 50000
lr_policy: "step"
gamma: 0.1
momentum: 0.9
weight_decay: 0.0002
stepsize: 250000
snapshot: 50000
snapshot_prefix: "/tmp/scratch/train_test_00001_00000_01037"
device_id: 0
net: "/tmp/scratch/train_test_00001_00000_01037.prototxt"
I0727 08:36:55.363838 11582 solver.cpp:91] Creating training net from net file: /tmp/scratch/train_test_00001_00000_01037.prototxt
I0727 08:36:55.366331 11582 net.cpp:323] The NetState phase (0) differed from the phase (1) specified by a rule in layer Image_data
I0727 08:36:55.366394 11582 net.cpp:323] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I0727 08:36:55.367301 11582 net.cpp:52] Initializing net from parameters:
name: "/tmp/scratch/train_test_00001_00000_01037.prototxt"
state {
phase: TRAIN
}
layer {
name: "Image_data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
}
data_param {
source: "/lustre/atlas/proj-shared/hep109/xsy_work/data/minerva_174planecodes/train-lmdb00001"
batch_size: 16
backend: LMDB
}
}
layer {
name: "Slice Node"
type: "Slice"
bottom: "data"
top: "Slice NodeX1"
top: "Slice NodeX2"
top: "data0_1"
top: "data0_2"
slice_param {
slice_point: 2
slice_point: 4
slice_point: 6
axis: 1
}
}
layer {
name: "Concatanation Node X views"
type: "Concat"
bottom: "Slice NodeX1"
bottom: "Slice NodeX2"
top: "data0_0"
concat_param {
axis: 3
}
}
layer {
name: "conv1_0"
type: "Convolution"
bottom: "data0_0"
top: "conv1_0"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 12
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
pad_h: 3
pad_w: 1
kernel_h: 8
kernel_w: 3
stride_h: 1
stride_w: 1
}
}
layer {
name: "conv1_1"
type: "Convolution"
bottom: "data0_1"
top: "conv1_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 12
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
pad_h: 3
pad_w: 1
kernel_h: 8
kernel_w: 3
stride_h: 2
stride_w: 1
}
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "data0_2"
top: "conv1_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 12
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
pad_h: 3
pad_w: 1
kernel_h: 8
kernel_w: 3
stride_h: 2
stride_w: 1
}
}
layer {
name: "relu1_0"
type: "ReLU"
bottom: "conv1_0"
top: "conv1_0"
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "pool2_0"
type: "Pooling"
bottom: "conv1_0"
top: "pool2_0"
pooling_param {
pool: MAX
kernel_h: 2
kernel_w: 1
stride_h: 2
stride_w: 1
}
}
layer {
name: "pool2_1"
type: "Pooling"
bottom: "conv1_1"
top: "pool2_1"
pooling_param {
pool: MAX
kernel_h: 2
kernel_w: 1
stride_h: 2
stride_w: 1
}
}
layer {
name: "pool2_2"
type: "Pooling"
bottom: "conv1_2"
top: "pool2_2"
pooling_param {
pool: MAX
kernel_h: 2
kernel_w: 1
stride_h: 2
stride_w: 1
}
}
layer {
name: "drop3_0"
type: "Dropout"
bottom: "pool2_0"
top: "pool2_0"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "drop3_1"
type: "Dropout"
bottom: "pool2_1"
top: "pool2_1"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "drop3_2"
type: "Dropout"
bottom: "pool2_2"
top: "pool2_2"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "conv3_0"
type: "Convolution"
bottom: "pool2_0"
top: "conv3_0"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 20
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
pad_h: 3
pad_w: 1
kernel_h: 7
kernel_w: 3
stride_h: 1
stride_w: 1
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2_1"
top: "conv3_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 20
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
pad_h: 10
pad_w: 1
kernel_h: 21
kernel_w: 3
stride_h: 4
stride_w: 1
}
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "pool2_2"
top: "conv3_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 20
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
pad_h: 10
pad_w: 1
kernel_h: 21
kernel_w: 3
stride_h: 4
stride_w: 1
}
}
layer {
name: "relu3_0"
type: "ReLU"
bottom: "conv3_0"
top: "conv3_0"
}
layer {
name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "pool4_0"
type: "Pooling"
bottom: "conv3_0"
top: "pool4_0"
pooling_param {
pool: MAX
kernel_h: 2
kernel_w: 6
stride_h: 2
stride_w: 6
}
}
layer {
name: "pool4_1"
type: "Pooling"
bottom: "conv3_1"
top: "pool4_1"
pooling_param {
pool: MAX
kernel_h: 1
kernel_w: 1
stride_h: 1
stride_w: 1
}
}
layer {
name: "pool4_2"
type: "Pooling"
bottom: "conv3_2"
top: "pool4_2"
pooling_param {
pool: MAX
kernel_h: 1
kernel_w: 1
stride_h: 1
stride_w: 1
}
}
layer {
name: "sigmoid4_0"
type: "Sigmoid"
bottom: "pool4_0"
top: "pool4_0"
}
layer {
name: "sigmoid4_1"
type: "Sigmoid"
bottom: "pool4_1"
top: "pool4_1"
}
layer {
name: "sigmoid4_2"
type: "Sigmoid"
bottom: "pool4_2"
top: "pool4_2"
}
layer {
name: "conv5_0"
type: "Convolution"
bottom: "pool4_0"
top: "conv5_0"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 28
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
pad_h: 3
pad_w: 0
kernel_h: 7
kernel_w: 1
stride_h: 1
stride_w: 1
}
}
layer {
name: "conv5_1"
type: "Convolution"
bottom: "pool4_1"
top: "conv5_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 28
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
pad_h: 2
pad_w: 1
kernel_h: 6
kernel_w: 3
stride_h: 2
stride_w: 1
}
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "pool4_2"
top: "conv5_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 28
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
pad_h: 2
pad_w: 1
kernel_h: 6
kernel_w: 3
stride_h: 2
stride_w: 1
}
}
layer {
name: "relu5_0"
type: "ReLU"
bottom: "conv5_0"
top: "conv5_0"
}
layer {
name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
}
layer {
name: "pool6_0"
type: "Pooling"
bottom: "conv5_0"
top: "pool6_0"
pooling_param {
pool: MAX
kernel_h: 2
kernel_w: 1
stride_h: 2
stride_w: 1
}
}
layer {
name: "pool6_1"
type: "Pooling"
bottom: "conv5_1"
top: "pool6_1"
pooling_param {
pool: MAX
kernel_h: 1
kernel_w: 1
stride_h: 1
stride_w: 1
}
}
layer {
name: "pool6_2"
type: "Pooling"
bottom: "conv5_2"
top: "pool6_2"
pooling_param {
pool: MAX
kernel_h: 1
kernel_w: 1
stride_h: 1
stride_w: 1
}
}
layer {
name: "conv7_0"
type: "Convolution"
bottom: "pool6_0"
top: "conv7_0"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 36
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
pad_h: 3
pad_w: 0
kernel_h: 7
kernel_w: 1
stride_h: 1
stride_w: 1
}
}
layer {
name: "conv7_1"
type: "Convolution"
bottom: "pool6_1"
top: "conv7_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 36
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
pad_h: 1
pad_w: 1
kernel_h: 4
kernel_w: 3
stride_h: 2
stride_w: 1
}
}
layer {
name: "conv7_2"
type: "Convolution"
bottom: "pool6_2"
top: "conv7_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 36
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
pad_h: 1
pad_w: 1
kernel_h: 4
kernel_w: 3
stride_h: 2
stride_w: 1
}
}
layer {
name: "relu7_0"
type: "ReLU"
bottom: "conv7_0"
top: "conv7_0"
}
layer {
name: "relu7_1"
type: "ReLU"
bottom: "conv7_1"
top: "conv7_1"
}
layer {
name: "relu7_2"
type: "ReLU"
bottom: "conv7_2"
top: "conv7_2"
}
layer {
name: "pool8_0"
type: "Pooling"
bottom: "conv7_0"
top: "pool8_0"
pooling_param {
pool: MAX
kernel_h: 2
kernel_w: 1
stride_h: 2
stride_w: 1
}
}
layer {
name: "pool8_1"
type: "Pooling"
bottom: "conv7_1"
top: "pool8_1"
pooling_param {
pool: MAX
kernel_h: 1
kernel_w: 1
stride_h: 1
stride_w: 1
}
}
layer {
name: "pool8_2"
type: "Pooling"
bottom: "conv7_2"
top: "pool8_2"
pooling_param {
pool: MAX
kernel_h: 1
kernel_w: 1
stride_h: 1
stride_w: 1
}
}
layer {
name: "flat8_0"
type: "Flatten"
bottom: "pool8_0"
top: "flat8_0"
}
layer {
name: "flat8_1"
type: "Flatten"
bottom: "pool8_1"
top: "flat8_1"
}
layer {
name: "flat8_2"
type: "Flatten"
bottom: "pool8_2"
top: "flat8_2"
}
layer {
name: "concat8_0"
type: "Concat"
bottom: "flat8_0"
bottom: "flat8_1"
bottom: "flat8_2"
top: "concat8_0"
}
layer {
name: "ip9_0"
type: "InnerProduct"
bottom: "concat8_0"
top: "ip9_0"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 64
weight_filler {
type: "gaussian"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "drop10_0"
type: "Dropout"
bottom: "ip9_0"
top: "ip9_0"
dropout_param {
dropout_ratio: 0.1
}
}
layer {
name: "relu9_0"
type: "ReLU"
bottom: "ip9_0"
top: "ip9_0"
}
layer {
name: "ip10_0"
type: "InnerProduct"
bottom: "ip9_0"
top: "ip10_0"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 64
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "drop11_0"
type: "Dropout"
bottom: "ip10_0"
top: "ip10_0"
dropout_param {
dropout_ratio: 0.1
}
}
layer {
name: "relu10_0"
type: "ReLU"
bottom: "ip10_0"
top: "ip10_0"
}
layer {
name: "finalip"
type: "InnerProduct"
bottom: "ip10_0"
top: "ipFinal"
inner_product_param {
num_output: 174
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ipFinal"
bottom: "label"
top: "loss"
}
I0727 08:36:55.367601 11582 layer_factory.hpp:77] Creating layer Image_data
I0727 08:36:55.376448 11582 net.cpp:94] Creating Layer Image_data
I0727 08:36:55.376471 11582 net.cpp:409] Image_data -> data
I0727 08:36:55.376497 11582 net.cpp:409] Image_data -> label
I0727 08:36:55.407379 11603 db_lmdb.cpp:35] Opened lmdb /lustre/atlas/proj-shared/hep109/xsy_work/data/minerva_174planecodes/train-lmdb00001
I0727 08:36:55.426007 11582 data_layer.cpp:76] output data size: 16,8,127,47
I0727 08:36:55.443846 11582 net.cpp:144] Setting up Image_data
I0727 08:36:55.443876 11582 net.cpp:151] Top shape: 16 8 127 47 (764032)
I0727 08:36:55.443888 11582 net.cpp:151] Top shape: 16 (16)
I0727 08:36:55.443905 11582 net.cpp:159] Memory required for data: 3056192
I0727 08:36:55.443922 11582 layer_factory.hpp:77] Creating layer Slice Node
I0727 08:36:55.443969 11582 net.cpp:94] Creating Layer Slice Node
I0727 08:36:55.443980 11582 net.cpp:435] Slice Node <- data
I0727 08:36:55.444003 11582 net.cpp:409] Slice Node -> Slice NodeX1
I0727 08:36:55.444025 11582 net.cpp:409] Slice Node -> Slice NodeX2
I0727 08:36:55.444051 11582 net.cpp:409] Slice Node -> data0_1
I0727 08:36:55.444066 11582 net.cpp:409] Slice Node -> data0_2
I0727 08:36:55.451143 11582 net.cpp:144] Setting up Slice Node
I0727 08:36:55.451159 11582 net.cpp:151] Top shape: 16 2 127 47 (191008)
I0727 08:36:55.451169 11582 net.cpp:151] Top shape: 16 2 127 47 (191008)
I0727 08:36:55.451180 11582 net.cpp:151] Top shape: 16 2 127 47 (191008)
I0727 08:36:55.451190 11582 net.cpp:151] Top shape: 16 2 127 47 (191008)
I0727 08:36:55.451197 11582 net.cpp:159] Memory required for data: 6112320
I0727 08:36:55.451205 11582 layer_factory.hpp:77] Creating layer Concatanation Node X views
I0727 08:36:55.451221 11582 net.cpp:94] Creating Layer Concatanation Node X views
I0727 08:36:55.451230 11582 net.cpp:435] Concatanation Node X views <- Slice NodeX1
I0727 08:36:55.451239 11582 net.cpp:435] Concatanation Node X views <- Slice NodeX2
I0727 08:36:55.451251 11582 net.cpp:409] Concatanation Node X views -> data0_0
I0727 08:36:55.451300 11582 net.cpp:144] Setting up Concatanation Node X views
I0727 08:36:55.451313 11582 net.cpp:151] Top shape: 16 2 127 94 (382016)
I0727 08:36:55.451319 11582 net.cpp:159] Memory required for data: 7640384
I0727 08:36:55.451328 11582 layer_factory.hpp:77] Creating layer conv1_0
I0727 08:36:55.451349 11582 net.cpp:94] Creating Layer conv1_0
I0727 08:36:55.451356 11582 net.cpp:435] conv1_0 <- data0_0
I0727 08:36:55.451369 11582 net.cpp:409] conv1_0 -> conv1_0
I0727 08:36:55.453696 11620 blocking_queue.cpp:50] Waiting for data
I0727 08:36:55.490108 11582 net.cpp:144] Setting up conv1_0
I0727 08:36:55.490134 11582 net.cpp:151] Top shape: 16 12 126 94 (2274048)
I0727 08:36:55.490142 11582 net.cpp:159] Memory required for data: 16736576
I0727 08:36:55.490169 11582 layer_factory.hpp:77] Creating layer conv1_1
I0727 08:36:55.490190 11582 net.cpp:94] Creating Layer conv1_1
I0727 08:36:55.490200 11582 net.cpp:435] conv1_1 <- data0_1
I0727 08:36:55.490211 11582 net.cpp:409] conv1_1 -> conv1_1
I0727 08:36:55.505563 11582 net.cpp:144] Setting up conv1_1
I0727 08:36:55.505587 11582 net.cpp:151] Top shape: 16 12 63 47 (568512)
I0727 08:36:55.505596 11582 net.cpp:159] Memory required for data: 19010624
I0727 08:36:55.505614 11582 layer_factory.hpp:77] Creating layer conv1_2
I0727 08:36:55.505632 11582 net.cpp:94] Creating Layer conv1_2
I0727 08:36:55.505640 11582 net.cpp:435] conv1_2 <- data0_2
I0727 08:36:55.505653 11582 net.cpp:409] conv1_2 -> conv1_2
I0727 08:36:55.520030 11582 net.cpp:144] Setting up conv1_2
I0727 08:36:55.520052 11582 net.cpp:151] Top shape: 16 12 63 47 (568512)
I0727 08:36:55.520061 11582 net.cpp:159] Memory required for data: 21284672
I0727 08:36:55.520079 11582 layer_factory.hpp:77] Creating layer relu1_0
I0727 08:36:55.520097 11582 net.cpp:94] Creating Layer relu1_0
I0727 08:36:55.520107 11582 net.cpp:435] relu1_0 <- conv1_0
I0727 08:36:55.520123 11582 net.cpp:396] relu1_0 -> conv1_0 (in-place)
I0727 08:36:55.520151 11582 net.cpp:144] Setting up relu1_0
I0727 08:36:55.520162 11582 net.cpp:151] Top shape: 16 12 126 94 (2274048)
I0727 08:36:55.520169 11582 net.cpp:159] Memory required for data: 30380864
I0727 08:36:55.520177 11582 layer_factory.hpp:77] Creating layer relu1_1
I0727 08:36:55.520187 11582 net.cpp:94] Creating Layer relu1_1
I0727 08:36:55.520202 11582 net.cpp:435] relu1_1 <- conv1_1
I0727 08:36:55.520212 11582 net.cpp:396] relu1_1 -> conv1_1 (in-place)
I0727 08:36:55.520225 11582 net.cpp:144] Setting up relu1_1
I0727 08:36:55.520234 11582 net.cpp:151] Top shape: 16 12 63 47 (568512)
I0727 08:36:55.520241 11582 net.cpp:159] Memory required for data: 32654912
I0727 08:36:55.520249 11582 layer_factory.hpp:77] Creating layer relu1_2
I0727 08:36:55.520262 11582 net.cpp:94] Creating Layer relu1_2
I0727 08:36:55.520268 11582 net.cpp:435] relu1_2 <- conv1_2
I0727 08:36:55.520278 11582 net.cpp:396] relu1_2 -> conv1_2 (in-place)
I0727 08:36:55.520296 11582 net.cpp:144] Setting up relu1_2
I0727 08:36:55.520306 11582 net.cpp:151] Top shape: 16 12 63 47 (568512)
I0727 08:36:55.520313 11582 net.cpp:159] Memory required for data: 34928960
I0727 08:36:55.520320 11582 layer_factory.hpp:77] Creating layer pool2_0
I0727 08:36:55.520334 11582 net.cpp:94] Creating Layer pool2_0
I0727 08:36:55.520341 11582 net.cpp:435] pool2_0 <- conv1_0
I0727 08:36:55.520350 11582 net.cpp:409] pool2_0 -> pool2_0
I0727 08:36:55.520439 11582 net.cpp:144] Setting up pool2_0
I0727 08:36:55.520450 11582 net.cpp:151] Top shape: 16 12 63 94 (1137024)
I0727 08:36:55.520457 11582 net.cpp:159] Memory required for data: 39477056
I0727 08:36:55.520464 11582 layer_factory.hpp:77] Creating layer pool2_1
I0727 08:36:55.520474 11582 net.cpp:94] Creating Layer pool2_1
I0727 08:36:55.520481 11582 net.cpp:435] pool2_1 <- conv1_1
I0727 08:36:55.520491 11582 net.cpp:409] pool2_1 -> pool2_1
I0727 08:36:55.520557 11582 net.cpp:144] Setting up pool2_1
I0727 08:36:55.520568 11582 net.cpp:151] Top shape: 16 12 32 47 (288768)
I0727 08:36:55.520576 11582 net.cpp:159] Memory required for data: 40632128
I0727 08:36:55.520582 11582 layer_factory.hpp:77] Creating layer pool2_2
I0727 08:36:55.520592 11582 net.cpp:94] Creating Layer pool2_2
I0727 08:36:55.520599 11582 net.cpp:435] pool2_2 <- conv1_2
I0727 08:36:55.520609 11582 net.cpp:409] pool2_2 -> pool2_2
I0727 08:36:55.520670 11582 net.cpp:144] Setting up pool2_2
I0727 08:36:55.520680 11582 net.cpp:151] Top shape: 16 12 32 47 (288768)
I0727 08:36:55.520687 11582 net.cpp:159] Memory required for data: 41787200
I0727 08:36:55.520694 11582 layer_factory.hpp:77] Creating layer drop3_0
I0727 08:36:55.520707 11582 net.cpp:94] Creating Layer drop3_0
I0727 08:36:55.520715 11582 net.cpp:435] drop3_0 <- pool2_0
I0727 08:36:55.520725 11582 net.cpp:396] drop3_0 -> pool2_0 (in-place)
I0727 08:36:55.520766 11582 net.cpp:144] Setting up drop3_0
I0727 08:36:55.520776 11582 net.cpp:151] Top shape: 16 12 63 94 (1137024)
I0727 08:36:55.520782 11582 net.cpp:159] Memory required for data: 46335296
I0727 08:36:55.520789 11582 layer_factory.hpp:77] Creating layer drop3_1
I0727 08:36:55.520799 11582 net.cpp:94] Creating Layer drop3_1
I0727 08:36:55.520807 11582 net.cpp:435] drop3_1 <- pool2_1
I0727 08:36:55.520817 11582 net.cpp:396] drop3_1 -> pool2_1 (in-place)
I0727 08:36:55.520853 11582 net.cpp:144] Setting up drop3_1
I0727 08:36:55.520862 11582 net.cpp:151] Top shape: 16 12 32 47 (288768)
I0727 08:36:55.520869 11582 net.cpp:159] Memory required for data: 47490368
I0727 08:36:55.520884 11582 layer_factory.hpp:77] Creating layer drop3_2
I0727 08:36:55.520895 11582 net.cpp:94] Creating Layer drop3_2
I0727 08:36:55.520901 11582 net.cpp:435] drop3_2 <- pool2_2
I0727 08:36:55.520911 11582 net.cpp:396] drop3_2 -> pool2_2 (in-place)
I0727 08:36:55.520957 11582 net.cpp:144] Setting up drop3_2
I0727 08:36:55.520969 11582 net.cpp:151] Top shape: 16 12 32 47 (288768)
I0727 08:36:55.520977 11582 net.cpp:159] Memory required for data: 48645440
I0727 08:36:55.520987 11582 layer_factory.hpp:77] Creating layer conv3_0
I0727 08:36:55.521006 11582 net.cpp:94] Creating Layer conv3_0
I0727 08:36:55.521014 11582 net.cpp:435] conv3_0 <- pool2_0
I0727 08:36:55.521028 11582 net.cpp:409] conv3_0 -> conv3_0
I0727 08:36:55.547682 11582 net.cpp:144] Setting up conv3_0
I0727 08:36:55.547706 11582 net.cpp:151] Top shape: 16 20 63 94 (1895040)
I0727 08:36:55.547716 11582 net.cpp:159] Memory required for data: 56225600
I0727 08:36:55.547744 11582 layer_factory.hpp:77] Creating layer conv3_1
I0727 08:36:55.547765 11582 net.cpp:94] Creating Layer conv3_1
I0727 08:36:55.547775 11582 net.cpp:435] conv3_1 <- pool2_1
I0727 08:36:55.547789 11582 net.cpp:409] conv3_1 -> conv3_1
I0727 08:36:55.563961 11582 net.cpp:144] Setting up conv3_1
I0727 08:36:55.563985 11582 net.cpp:151] Top shape: 16 20 8 47 (120320)
I0727 08:36:55.563994 11582 net.cpp:159] Memory required for data: 56706880
I0727 08:36:55.564016 11582 layer_factory.hpp:77] Creating layer conv3_2
I0727 08:36:55.564036 11582 net.cpp:94] Creating Layer conv3_2
I0727 08:36:55.564046 11582 net.cpp:435] conv3_2 <- pool2_2
I0727 08:36:55.564060 11582 net.cpp:409] conv3_2 -> conv3_2
I0727 08:36:55.580111 11582 net.cpp:144] Setting up conv3_2
I0727 08:36:55.580135 11582 net.cpp:151] Top shape: 16 20 8 47 (120320)
I0727 08:36:55.580144 11582 net.cpp:159] Memory required for data: 57188160
I0727 08:36:55.580162 11582 layer_factory.hpp:77] Creating layer relu3_0
I0727 08:36:55.580176 11582 net.cpp:94] Creating Layer relu3_0
I0727 08:36:55.580185 11582 net.cpp:435] relu3_0 <- conv3_0
I0727 08:36:55.580198 11582 net.cpp:396] relu3_0 -> conv3_0 (in-place)
I0727 08:36:55.580214 11582 net.cpp:144] Setting up relu3_0
I0727 08:36:55.580227 11582 net.cpp:151] Top shape: 16 20 63 94 (1895040)
I0727 08:36:55.580235 11582 net.cpp:159] Memory required for data: 64768320
I0727 08:36:55.580243 11582 layer_factory.hpp:77] Creating layer relu3_1
I0727 08:36:55.580255 11582 net.cpp:94] Creating Layer relu3_1
I0727 08:36:55.580263 11582 net.cpp:435] relu3_1 <- conv3_1
I0727 08:36:55.580274 11582 net.cpp:396] relu3_1 -> conv3_1 (in-place)
I0727 08:36:55.580293 11582 net.cpp:144] Setting up relu3_1
I0727 08:36:55.580304 11582 net.cpp:151] Top shape: 16 20 8 47 (120320)
I0727 08:36:55.580312 11582 net.cpp:159] Memory required for data: 65249600
I0727 08:36:55.580320 11582 layer_factory.hpp:77] Creating layer relu3_2
I0727 08:36:55.580332 11582 net.cpp:94] Creating Layer relu3_2
I0727 08:36:55.580340 11582 net.cpp:435] relu3_2 <- conv3_2
I0727 08:36:55.580351 11582 net.cpp:396] relu3_2 -> conv3_2 (in-place)
I0727 08:36:55.580365 11582 net.cpp:144] Setting up relu3_2
I0727 08:36:55.580376 11582 net.cpp:151] Top shape: 16 20 8 47 (120320)
I0727 08:36:55.580384 11582 net.cpp:159] Memory required for data: 65730880
I0727 08:36:55.580392 11582 layer_factory.hpp:77] Creating layer pool4_0
I0727 08:36:55.580406 11582 net.cpp:94] Creating Layer pool4_0
I0727 08:36:55.580416 11582 net.cpp:435] pool4_0 <- conv3_0
I0727 08:36:55.580428 11582 net.cpp:409] pool4_0 -> pool4_0
I0727 08:36:55.580520 11582 net.cpp:144] Setting up pool4_0
I0727 08:36:55.580533 11582 net.cpp:151] Top shape: 16 20 32 16 (163840)
I0727 08:36:55.580541 11582 net.cpp:159] Memory required for data: 66386240
I0727 08:36:55.580549 11582 layer_factory.hpp:77] Creating layer pool4_1
I0727 08:36:55.580561 11582 net.cpp:94] Creating Layer pool4_1
I0727 08:36:55.580569 11582 net.cpp:435] pool4_1 <- conv3_1
I0727 08:36:55.580581 11582 net.cpp:409] pool4_1 -> pool4_1
I0727 08:36:55.580652 11582 net.cpp:144] Setting up pool4_1
I0727 08:36:55.580663 11582 net.cpp:151] Top shape: 16 20 8 47 (120320)
I0727 08:36:55.580672 11582 net.cpp:159] Memory required for data: 66867520
I0727 08:36:55.580680 11582 layer_factory.hpp:77] Creating layer pool4_2
I0727 08:36:55.580691 11582 net.cpp:94] Creating Layer pool4_2
I0727 08:36:55.580700 11582 net.cpp:435] pool4_2 <- conv3_2
I0727 08:36:55.580711 11582 net.cpp:409] pool4_2 -> pool4_2
I0727 08:36:55.580781 11582 net.cpp:144] Setting up pool4_2
I0727 08:36:55.580792 11582 net.cpp:151] Top shape: 16 20 8 47 (120320)
I0727 08:36:55.580806 11582 net.cpp:159] Memory required for data: 67348800
I0727 08:36:55.580816 11582 layer_factory.hpp:77] Creating layer sigmoid4_0
I0727 08:36:55.580826 11582 net.cpp:94] Creating Layer sigmoid4_0
I0727 08:36:55.580835 11582 net.cpp:435] sigmoid4_0 <- pool4_0
I0727 08:36:55.580847 11582 net.cpp:396] sigmoid4_0 -> pool4_0 (in-place)
I0727 08:36:55.580868 11582 net.cpp:144] Setting up sigmoid4_0
I0727 08:36:55.580886 11582 net.cpp:151] Top shape: 16 20 32 16 (163840)
I0727 08:36:55.580894 11582 net.cpp:159] Memory required for data: 68004160
I0727 08:36:55.580902 11582 layer_factory.hpp:77] Creating layer sigmoid4_1
I0727 08:36:55.580914 11582 net.cpp:94] Creating Layer sigmoid4_1
I0727 08:36:55.580922 11582 net.cpp:435] sigmoid4_1 <- pool4_1
I0727 08:36:55.580935 11582 net.cpp:396] sigmoid4_1 -> pool4_1 (in-place)
I0727 08:36:55.580947 11582 net.cpp:144] Setting up sigmoid4_1
I0727 08:36:55.580958 11582 net.cpp:151] Top shape: 16 20 8 47 (120320)