diff --git a/2_SWSF_p1of5_Settings_v51.R b/2_SWSF_p1of5_Settings_v51.R index 1490fa60..b7afce64 100644 --- a/2_SWSF_p1of5_Settings_v51.R +++ b/2_SWSF_p1of5_Settings_v51.R @@ -95,7 +95,7 @@ dir.out <- file.path(dir.big, "4_Data_SWOutputAggregated") #path to aggregated o # - output handling # - "concatenate": moves results from the simulation runs (temporary text files) to a SQL-database actions <- c("create", "execute", "aggregate", "concatenate") -#continues with unfinished part of simulation after abort if TRUE, i.e., +#continues with unfinished part of simulation after abort if TRUE, i.e., # - it doesn't delete an existing weather database, if a new one is requested # - it doesn't re-extract external information (soils, elevation, climate normals, NCEPCFSR) if already extracted # - it doesn't lookup values from tables if already available in input datafiles, i.e., 'LookupEvapCoeffFromTable', 'LookupTranspRegionsFromTable', and 'LookupSnowDensityFromTable' @@ -145,7 +145,7 @@ dbW_compression_type <- "gzip" # one of eval(formals(memCompress)[[2]]); this on #-Spatial setup of simulations # Should the locations of 'SWRunInformation' interpreted as 2D-cells of a raster/grid or as 1D-sites -# sim_cells_or_points: currently, implemented for +# sim_cells_or_points: currently, implemented for # - actions == "map_inputs" # - external extractions: # - soils: "ExtractSoilDataFromISRICWISEv12_Global", "ExtractSoilDataFromCONUSSOILFromSTATSGO_USA", @@ -315,20 +315,21 @@ simulation_timescales <- c("daily", "monthly", "yearly") # functions to aggregate output across years # don't delete names, only set \code{TRUE}/\code{FALSE} agg_funs <- list( - mean = TRUE, - SD = TRUE, - quantile = TRUE, - mad = TRUE, - yearly = TRUE + mean = TRUE, + SD = TRUE, + quantile = TRUE, + median = TRUE, + mad = TRUE, + yearly = TRUE ) agg_fun_options <- list( - quantile = list(probs = c(0, 0.025, 0.5, 0.975, 1)) + quantile = list(probs = c(0, 0.025, 0.5, 0.975, 1)) ) # named list of time windows to aggregate over agg_years <- c( - current1 = list(startyr:endyr), - current2 = list((endyr - 10):(endyr + 10)), - future = apply(future_yrs, 1, function(x) x["DSfut_startyr"]:x["DSfut_endyr"]) + current1 = list(startyr:endyr), + current2 = list((endyr - 10):(endyr + 10)), + future = apply(future_yrs, 1, function(x) x["DSfut_startyr"]:x["DSfut_endyr"]) ) #turn aggregation for variable groups on (1) or off (0), don't delete any variable group labels output_aggregates <- c( diff --git a/2_SWSF_p2of5_CreateDB_Tables_v51.R b/2_SWSF_p2of5_CreateDB_Tables_v51.R index 665e6b57..460484a2 100644 --- a/2_SWSF_p2of5_CreateDB_Tables_v51.R +++ b/2_SWSF_p2of5_CreateDB_Tables_v51.R @@ -1,10 +1,10 @@ # TODO: Add comment -# +# # Author: Ryan Murphy # # # This will generate all the SQL table definitions. -# +# # ############################################################################### suppressMessages(library(RSQLite)) @@ -20,7 +20,7 @@ if (createAndPopulateWeatherDatabase) { file.remove(dbWeatherDataFile) } } - + # weather database contains rows for 1:max(SWRunInformation$site_id) (whether included or not) dbW_createDatabase(dbFilePath = dbWeatherDataFile, site_data = data.frame(Site_id = SWRunInformation$site_id, @@ -33,38 +33,38 @@ if (createAndPopulateWeatherDatabase) { compression_type = dbW_compression_type) Time <- Sys.time() - + # Extract weather data and move to weather database based on inclusion-invariant 'site_id' # Extract weather data per site if (!be.quiet) print(paste(Sys.time(), "started with moving single site weather data to database")) - + ids_single <- which(sites_dailyweather_source %in% c("LookupWeatherFolder", "Maurer2002_NorthAmerica")) ## position in 'runIDs_sites' if (length(ids_single) > 0) { if (any(sites_dailyweather_source == "Maurer2002_NorthAmerica")) Maurer <- with(SWRunInformation[runIDs_sites[ids_single], ], create_filename_for_Maurer2002_NorthAmerica(X_WGS84, Y_WGS84)) - + for (i in seq_along(ids_single)) { i_idss <- ids_single[i] i_site <- runIDs_sites[i_idss] - + if (!be.quiet && i %% 100 == 1) print(paste(Sys.time(), "storing weather data of site", SWRunInformation$Label[i_site], i, "of", length(ids_single), "sites in database")) - + if (sites_dailyweather_source[i_idss] == "LookupWeatherFolder") { weatherData <- ExtractLookupWeatherFolder(dir.weather = file.path(dir.sw.in.tr, "LookupWeatherFolder"), weatherfoldername = SWRunInformation$WeatherFolder[i_site]) - + } else if (sites_dailyweather_source[i_idss] == "Maurer2002_NorthAmerica") { weatherData <- ExtractGriddedDailyWeatherFromMaurer2002_NorthAmerica( dir_data = dir.ex.maurer2002, cellname = Maurer[i], startYear = simstartyr, endYear = endyr) - + } else { stop(paste(sites_dailyweather_source[i_idss], "not implemented")) } - + if (!is.null(weatherData)) { years <- as.integer(names(weatherData)) data_blob <- dbW_weatherData_to_blob(weatherData, type = dbW_compression_type) @@ -127,7 +127,7 @@ if (createAndPopulateWeatherDatabase) { dbW_compression_type = dbW_compression_type) } rm(ids_NCEPCFSR_extraction) - + dbW_disconnectConnection() } @@ -154,7 +154,7 @@ PRAGMA_settings2 <- c(PRAGMA_settings1, if(length(Tables) == 0) set_PRAGMAs(con, PRAGMA_settings2) headerTables <- c("runs", "sqlite_sequence", "header", "run_labels", "scenario_labels", "sites", "experimental_labels", "treatments", "simulation_years", - "weatherfolders", "aggregation_functions", "aggregation_timewindows", + "weatherfolders", "aggregating_functions", "aggregating_timewindows", "Meta") @@ -178,9 +178,9 @@ if (length(Tables) == 0 || cleanDB) { ################################################## ###################### - + RSQLite::dbGetQuery(con, "CREATE TABLE weatherfolders(id INTEGER PRIMARY KEY AUTOINCREMENT, folder TEXT UNIQUE NOT NULL);") - + if (!(all(any((SWRunInformation$dailyweather_source[runIDs_sites] == "LookupWeatherFolder")), any(create_treatments == "LookupWeatherFolder")))) { if (any(!is.na(SWRunInformation$WeatherFolder))) { @@ -195,11 +195,11 @@ if (length(Tables) == 0 || cleanDB) { # value = data.frame(id = rep(NA, length(temp)), folder = temp), row.names = FALSE) } else { - stop("All WeatherFolder names in master input file are NAs.") + stop("All WeatherFolder names in master input file are NAs.") } } - - + + #############Site Table############################ # Note: invariant to 'include_YN', i.e., do not subset rows of 'SWRunInformation' index_sites <- sort(unique(c(sapply(c("Label", "site_id", "WeatherFolder", "X_WGS84", "Y_WGS84", "ELEV_m", "Include_YN"), @@ -210,25 +210,25 @@ if (length(Tables) == 0 || cleanDB) { sites_data$WeatherFolder <- getSiteIds(con, sites_data$WeatherFolder) colnames(sites_data) <- sub(pattern = "WeatherFolder", replacement = "WeatherFolder_id", colnames(sites_data)) site_col_types <- sapply(sites_data, function(x) RSQLite::dbDataType(con, x)) - + RSQLite::dbGetQuery(con, paste0("CREATE TABLE sites(\"id\" INTEGER PRIMARY KEY AUTOINCREMENT, ", paste0('\"', colnames(sites_data), '\" ', site_col_types, collapse = ", "), ", FOREIGN KEY(WeatherFolder_id) REFERENCES weatherfolders(id));")) - + RSQLite::dbWriteTable(con, "sites", append = TRUE, value = cbind(id = NA, sites_data), row.names = FALSE) - + rm(site_col_types, sites_data) - + useExperimentals <- expN > 0 && length(create_experimentals) > 0 useTreatments <- !(length(create_treatments[!(create_treatments %in% create_experimentals)])==0) - + #############simulation_years table######################### RSQLite::dbGetQuery(con, "CREATE TABLE simulation_years(id INTEGER PRIMARY KEY AUTOINCREMENT, simulationStartYear INTEGER NOT NULL, StartYear INTEGER NOT NULL, EndYear INTEGER NOT NULL);") ################################################## - - + + ##########Create table experimental_labels only if using experimentals if(useExperimentals) { RSQLite::dbGetQuery(con, "CREATE TABLE experimental_labels(id INTEGER PRIMARY KEY AUTOINCREMENT, label TEXT UNIQUE NOT NULL);") @@ -238,12 +238,12 @@ if (length(Tables) == 0 || cleanDB) { RSQLite::dbCommit(con) } ################################ - + #If LookupWeatherFolder is ON we need to make sure all of the weather folders are in weatherfolders table #TODO: WeatherFolder update if(any(create_treatments=="LookupWeatherFolder")) { #which ones are not in SWRunInformation$WeatherFolder - + #make a combined list of experimentals and treatments LookupWeatherFolder List #first add any from the experimentals table if its turned on #next add any from the treatments table if its turned on @@ -277,7 +277,7 @@ if (length(Tables) == 0 || cleanDB) { } } } - + # get unique rows from both treatments and experimentals if(useExperimentals) {#Only use experimentals if there is something in it #Are all the columns NA @@ -291,7 +291,7 @@ if (length(Tables) == 0 || cleanDB) { if(length(create_experimentals) > 0 && expN == 0) stop("No rows in experimentals table but columns are turned on") if(expN > 0 && length(create_experimentals)==0) warning("Rows in experimentals are not being used.") } - + if(useTreatments) { # Note: invariant to 'include_YN', i.e., do not subset 'SWRunInformation' # we only need the columns that are turned on and not in experimentals. Experimentals over write. @@ -309,7 +309,7 @@ if (length(Tables) == 0 || cleanDB) { } else { db_treatments_rows <- 1 } - + #Replace the LookupWeatherFolder with the LookupWeatherFolder_id in either db_experimentals or db_treatments if(any(create_treatments=="LookupWeatherFolder")) { if(any(create_experimentals=="LookupWeatherFolder")) { @@ -332,16 +332,16 @@ if (length(Tables) == 0 || cleanDB) { temp_columnNames <- c("id",if(useExperimentals) c("experimental_id"),"simulation_years_id",create_treatments) db_combined_exp_treatments <- data.frame(matrix(data=NA, nrow=temp_numberRows, ncol=temp_numberColumns,dimnames=list(NULL, temp_columnNames)),stringsAsFactors = FALSE) rm(temp_numberColumns,temp_columnNames,temp_numberRows) - + #fill in the id column. db_combined_exp_treatments$id <- 1:nrow(db_combined_exp_treatments) - + #column types are listed in this data.frame along with what table it is from db_treatments_column_types <- data.frame(column=create_treatments, type=character(length(create_treatments)),table=numeric(length(create_treatments)), stringsAsFactors = FALSE) #0 for teatments 1 for experimentals db_treatments_column_types[db_treatments_column_types[,1] %in% create_experimentals,3] <- 1 - - ###################### + + ###################### #Get the column types from the proper tables db_treatments_column_types[,2] <- sapply(db_treatments_column_types[,1], function(columnName) { if(columnName %in% create_experimentals) { @@ -350,7 +350,7 @@ if (length(Tables) == 0 || cleanDB) { RSQLite::dbDataType(con, sw_input_treatments[,columnName]) } }) - + #Finalize db_treatments_column_types #remove YearStart or YearEnd db_treatments_years <- NULL @@ -362,7 +362,7 @@ if (length(Tables) == 0 || cleanDB) { db_treatments_years <- rbind(db_treatments_years, db_treatments_column_types[which(db_treatments_column_types$column == "YearEnd"),]) db_treatments_column_types <- db_treatments_column_types[-which(db_treatments_column_types$column == "YearEnd"),] } - + #rename weather folder column name and create the fk fk_LookupWeatherFolder <- "" if(any(create_treatments=="LookupWeatherFolder")) { @@ -373,7 +373,7 @@ if (length(Tables) == 0 || cleanDB) { } #Create the table RSQLite::dbGetQuery(con, paste("CREATE TABLE treatments(id INTEGER PRIMARY KEY AUTOINCREMENT, ",if(useExperimentals) "experimental_id INTEGER,", " simulation_years_id INTEGER, ", paste(db_treatments_column_types[,1], " ", db_treatments_column_types[,2], sep="", collapse =", "), if(useExperimentals || fk_LookupWeatherFolder!="") ", ", if(useExperimentals) "FOREIGN KEY(experimental_id) REFERENCES experimental_labels(id)",if(fk_LookupWeatherFolder != "") ", ",fk_LookupWeatherFolder,");", sep="")) - + #Lets put in the treatments into combined. This will repeat the reduced rows of treatments into combined if(useTreatments) { i_start <- which(colnames(db_treatments) == "YearStart") @@ -386,7 +386,7 @@ if (length(Tables) == 0 || cleanDB) { if(length(i_start) > 0 && !is.null(db_treatments_years) && db_treatments_years[db_treatments_years$column == "YearStart", "table"] == 0) db_combined_exp_treatments[, colnames(db_combined_exp_treatments) == "YearStart"] <- db_treatments[, i_start] if(length(i_end) > 0 && !is.null(db_treatments_years) && db_treatments_years[db_treatments_years$column == "YearEnd", "table"] == 0) db_combined_exp_treatments[, colnames(db_combined_exp_treatments) == "YearEnd"] <- db_treatments[, i_end] } - + if(useExperimentals) { exp_start_rows<-seq(from=1,to=db_treatments_rows*nrow(db_experimentals),by=db_treatments_rows) #Insert data into our new data.frame @@ -401,7 +401,7 @@ if (length(Tables) == 0 || cleanDB) { db_combined_exp_treatments <- data.frame(matrix(data=c(1,1), nrow=1, ncol=2,dimnames=list(NULL, c("id","simulation_years_id"))),stringsAsFactors = FALSE) RSQLite::dbGetQuery(con, paste("CREATE TABLE treatments(id INTEGER PRIMARY KEY AUTOINCREMENT, simulation_years_id INTEGER);", sep="")) } - + #if the column startYear or endYear are present move over to simulation_years if(any(colnames(db_combined_exp_treatments) == "YearStart") || any(colnames(db_combined_exp_treatments) == "YearEnd")) { simulation_years<-matrix(data=NA, nrow=nrow(db_combined_exp_treatments), ncol = 4, dimnames=list(NULL,c("id","simulationStartYear","StartYear","EndYear"))) @@ -419,7 +419,7 @@ if (length(Tables) == 0 || cleanDB) { simulation_years[, "EndYear"] <- endyr } simulation_years[, "StartYear"] <- getStartYear(simulation_years[, "simulationStartYear"]) - + unique_simulation_years <- unique(simulation_years) #each row is unique so add id to db_combined if(nrow(unique_simulation_years)==nrow(simulation_years)) { @@ -447,19 +447,19 @@ if (length(Tables) == 0 || cleanDB) { RSQLite::dbGetPreparedQuery(con, "INSERT INTO simulation_years VALUES(NULL, :simulationStartYear, :StartYear, :EndYear);", bind.data = data.frame(simulationStartYear=simstartyr, StartYear=startyr, EndYear=endyr)) RSQLite::dbCommit(con) } - + #Insert the data into the treatments table RSQLite::dbBegin(con) RSQLite::dbGetPreparedQuery(con, paste("INSERT INTO treatments VALUES(",paste(":",colnames(db_combined_exp_treatments),sep="",collapse=", "),")",sep=""), bind.data = db_combined_exp_treatments) RSQLite::dbCommit(con) - + ##############scenario_labels table############### RSQLite::dbGetQuery(con, "CREATE TABLE scenario_labels(id INTEGER PRIMARY KEY AUTOINCREMENT, label TEXT UNIQUE NOT NULL);") RSQLite::dbBegin(con) RSQLite::dbGetPreparedQuery(con, "INSERT INTO scenario_labels VALUES(NULL, :label);", bind.data = data.frame(label=climate.conditions,stringsAsFactors = FALSE)) RSQLite::dbCommit(con) ################################################## - + #############run_labels table######################### # Note: invariant to 'include_YN', i.e., do not subset 'SWRunInformation' RSQLite::dbGetQuery(con, "CREATE TABLE run_labels(id INTEGER PRIMARY KEY AUTOINCREMENT, label TEXT UNIQUE NOT NULL);") @@ -478,23 +478,23 @@ if (length(Tables) == 0 || cleanDB) { ################################################## ##############agg_fun table############### - RSQLite::dbGetQuery(con, "CREATE TABLE aggregation_functions(id INTEGER PRIMARY KEY AUTOINCREMENT, agg_fun TEXT UNIQUE NOT NULL);") + RSQLite::dbGetQuery(con, "CREATE TABLE aggregating_functions(id INTEGER PRIMARY KEY AUTOINCREMENT, agg_fun TEXT UNIQUE NOT NULL);") RSQLite::dbBegin(con) - RSQLite::dbGetPreparedQuery(con, "INSERT INTO aggregation_functions VALUES(NULL, :agg_fun);", - bind.data = data.frame(label = agg_fun_names, stringsAsFactors = FALSE)) + RSQLite::dbGetPreparedQuery(con, "INSERT INTO aggregating_functions VALUES(NULL, :agg_fun);", + bind.data = data.frame(agg_fun = agg_fun_names, stringsAsFactors = FALSE)) RSQLite::dbCommit(con) ################################################## ##############aggregating time windows table############### stopifnot(c("label", "agg_start", "agg_end") %in% names(agg_windows)) - RSQLite::dbGetQuery(con, "CREATE TABLE aggregation_timewindows(id INTEGER PRIMARY KEY AUTOINCREMENT, label TEXT UNIQUE NOT NULL, agg_start INTEGER, agg_end INTEGER);") + RSQLite::dbGetQuery(con, "CREATE TABLE aggregating_timewindows(id INTEGER PRIMARY KEY AUTOINCREMENT, label TEXT UNIQUE NOT NULL, agg_start INTEGER, agg_end INTEGER);") RSQLite::dbBegin(con) - RSQLite::dbGetPreparedQuery(con, "INSERT INTO aggregation_timewindows VALUES(NULL, :label, :agg_start, :agg_end);", + RSQLite::dbGetPreparedQuery(con, "INSERT INTO aggregating_timewindows VALUES(NULL, :label, :agg_start, :agg_end);", bind.data = agg_windows) RSQLite::dbCommit(con) ################################################## - - + + #####################runs table################### # Note: invariant to 'include_YN', i.e., do not subset 'SWRunInformation' RSQLite::dbGetQuery(con, "CREATE TABLE runs(P_id INTEGER PRIMARY KEY, label_id INTEGER NOT NULL, site_id INTEGER NOT NULL, treatment_id INTEGER NOT NULL, scenario_id INTEGER NOT NULL, FOREIGN KEY(label_id) REFERENCES run_labels(id), FOREIGN KEY(site_id) REFERENCES sites(id), FOREIGN KEY(treatment_id) REFERENCES treatments(id), FOREIGN KEY(scenario_id) REFERENCES scenario_labels(id));") @@ -502,12 +502,12 @@ if (length(Tables) == 0 || cleanDB) { nrow = runsN_Pid, ncol = 5, dimnames = list(NULL, c("P_id", "label_id", "site_id", "treatment_id", "scenario_id")))) - + db_runs$P_id <- seq_len(runsN_Pid) db_runs$label_id <- rep(seq_len(runsN_incl), each = scenario_No) db_runs$site_id <- rep(rep(SWRunInformation$site_id, times = max(expN, 1L)), each = scenario_No) db_runs$scenario_id <- rep(seq_len(scenario_No), times = runsN_incl) - + if (useTreatments) { if (useExperimentals) { i_exp<-as.vector(matrix(data=exp_start_rows,nrow=runsN_master,ncol=expN,byrow=T)) @@ -527,7 +527,7 @@ if (length(Tables) == 0 || cleanDB) { RSQLite::dbGetPreparedQuery(con, "INSERT INTO runs VALUES(:P_id, :label_id, :site_id, :treatment_id, :scenario_id);", bind.data=db_runs) RSQLite::dbCommit(con) ################################################## - + ################CREATE VIEW######################## if (length(Index_RunInformation) > 0) { sites_columns <- colnames(SWRunInformation)[Index_RunInformation] @@ -555,7 +555,7 @@ if (length(Tables) == 0 || cleanDB) { "simulation_years.EndYear", "scenario_labels.label AS Scenario"), collapse = ", ") - + RSQLite::dbGetQuery(con, paste0( "CREATE VIEW header AS SELECT ", header_columns, " FROM runs, run_labels, sites, ", if (useExperimentals) @@ -574,13 +574,13 @@ if (length(Tables) == 0 || cleanDB) { )) ################################################## - + #B. Aggregation_Overall - + ##############################################################---Aggregation: SoilWat inputs---############################################################## ## Note: All '.' will be translated to "_" because of sqlite field name constraints temp <- character(0) - + fieldtag_SWPcrit_MPa <- paste0(abs(round(-1000 * SWPcrit_MPa, 0)), "kPa") fieldtag_Tmin_crit_C <- paste0(ifelse(Tmin_crit_C < 0, "Neg", ifelse(Tmin_crit_C > 0, "Pos", "")), abs(Tmin_crit_C), "C") fieldtag_Tmax_crit_C <- paste0(ifelse(Tmax_crit_C < 0, "Neg", ifelse(Tmax_crit_C > 0, "Pos", "")), abs(Tmax_crit_C), "C") @@ -591,7 +591,7 @@ if (length(Tables) == 0 || cleanDB) { temp <- paste("SWinput.Soil.", c("maxDepth_cm", "soilLayers_N", "topLayers.Sand_fraction", "bottomLayers.Sand_fraction", "topLayers.Clay_fraction", "bottomLayers.Clay_fraction", "topLayers.Gravel_fraction", "bottomLayers.Gravel_fraction","deltaX"), sep="") } - #1. + #1. if(aon$input_FractionVegetationComposition) { temp <- c(temp, paste("SWinput.Composition.", c("Grasses", "Shrubs", "Trees", "Forbs", "BareGround", "C3ofGrasses", "C4ofGrasses", "AnnualsofGrasses"), "_fraction_const", sep="")) } @@ -599,11 +599,11 @@ if (length(Tables) == 0 || cleanDB) { if(aon$input_VegetationBiomassMonthly) { temp <- c(temp, paste(c(rep("Grass",36),rep("Shrub",36),rep("Tree",36),rep("Forb",36)),"_",c(rep("Litter",12),rep("TotalBiomass",12),rep("LiveBiomass",12)),"_m", st_mo,"_gPERm2",sep="")) } - #3. + #3. if(aon$input_VegetationPeak) { temp <- c(temp, paste("SWinput.PeakLiveBiomass_", c("month_mean","months_duration"), sep="")) } - + #4. if(any(simulation_timescales=="monthly") && aon$input_Phenology) { temp <- c(temp, paste("SWinput.GrowingSeason.", c("Start", "End"), "_month_const", sep="")) @@ -637,86 +637,86 @@ if (length(Tables) == 0 || cleanDB) { temp <- c(temp, c(paste("SWinput.", rep(vtemp <- c("Grass", "Shrub", "Tree","Forb"), each=SoilLayer_MaxNo), ".TranspirationCoefficients.", rep(ltemp, times=4), "_fraction", sep=""), paste("SWinput.", rep(vtemp, each=2), ".TranspirationCoefficients.", rep(c("topLayer", "bottomLayer"), times=4), "_fraction", sep=""))) } - + #6. if(aon$input_ClimatePerturbations) { temp <- c(temp, paste(rep(paste("SWinput.ClimatePerturbations.", c("PrcpMultiplier.m", "TmaxAddand.m", "TminAddand.m"), sep=""), each=12), st_mo, rep(c("_none", "_C", "_C"), each=12), "_const", sep="")) } - + ##############################################################---Aggregation: Climate and weather---############################################################## - + #7. if(any(simulation_timescales=="yearly") & aon$yearlyTemp){ temp <- c(temp, "MAT_C_mean") } - + #8. if(any(simulation_timescales=="yearly") & aon$yearlyPPT){ temp <- c(temp, c("MAP_mm_mean", "SnowOfPPT_fraction_mean")) } - + #9. if(any(simulation_timescales=="daily") & any(simulation_timescales=="yearly") & aon$dailySnowpack){ temp <- c(temp, "RainOnSnowOfMAP_fraction_mean") } - + #10. if(any(simulation_timescales=="daily") & aon$dailySnowpack){ temp <- c(temp, paste("Snowcover.NSadj.", c("Peak_doy", "LongestContinuous.LastDay_doy", "LongestContinuous.Duration_days", "Total_days", "Peak_mmSWE"), "_mean", sep="")) } #11 - if(any(simulation_timescales=="daily") & aon$dailyFrostInSnowfreePeriod){ + if(any(simulation_timescales=="daily") & aon$dailyFrostInSnowfreePeriod){ temp <- c(temp, paste0("TminBelow", fieldtag_Tmin_crit_C, "withoutSnowpack_days_mean")) } #12 - if(any(simulation_timescales=="daily") & aon$dailyHotDays){ + if(any(simulation_timescales=="daily") & aon$dailyHotDays){ temp <- c(temp, paste0("TmaxAbove", fieldtag_Tmax_crit_C, "_days_mean")) } #12b if (any(simulation_timescales == "daily") && aon$dailyWarmDays) { temp <- c(temp, paste0("TmeanAbove", fieldtag_Tmean_crit_C, "_days_mean")) - } + } #13 if(any(simulation_timescales=="daily") & aon$dailyPrecipitationEventSizeDistribution){ bins.summary <- (0:6) * bin.prcpSizes temp <- c(temp, paste("PrcpEvents.Annual", c("_count", paste(".SizeClass", bins.summary, "to", c(bins.summary[-1], "Inf"), "mm_fraction", sep="")), "_mean", sep="")) rm(bins.summary) } - + #15 if(any(simulation_timescales=="yearly") & aon$yearlyPET){ temp <- c(temp, "PET_mm_mean") } - + #16 if(any(simulation_timescales=="monthly") & aon$monthlySeasonalityIndices){ temp <- c(temp, paste("Seasonality.monthly", c("PETandSWPtopLayers", "PETandSWPbottomLayers", "TandPPT"), "_PearsonCor_mean", sep="")) } - #---Aggregation: Climatic dryness + #---Aggregation: Climatic dryness #17 if(any(simulation_timescales=="yearly") & any(simulation_timescales=="monthly") & aon$yearlymonthlyTemperateDrylandIndices){ temp <- c(temp, paste(c(paste(temp <- c("UNAridityIndex", "TrewarthaD", "TemperateDryland12"), ".Normals", sep=""), paste(temp, ".Annual", sep="")), rep(c("_none", "_TF", "_TF"), times=2), "_mean", sep="")) } - + #18 if(any(simulation_timescales=="yearly") & aon$yearlyDryWetPeriods){ temp <- c(temp, paste(c("Dry", "Wet"), "SpellDuration.90PercentEvents.ShorterThan_years_quantile0.9", sep="")) } - + #19 if(any(simulation_timescales=="daily") & aon$dailyWeatherGeneratorCharacteristics){ temp <- c(temp, paste(rep(c("WetSpellDuration", "DrySpellDuration", "TempAir.StDevOfDailyValues"), each=12), ".m", st_mo, rep(c("_days", "_days", "_C"), each=12), "_mean", sep="")) } - + #20 if(any(simulation_timescales=="daily") & aon$dailyPrecipitationFreeEventDistribution){ bins.summary <- (0:3) * bin.prcpfreeDurations temp <- c(temp, paste("DrySpells.Annual", c("_count", paste(".SizeClass", bins.summary+1, "to", c(bins.summary[-1], "365"), "days_fraction", sep="")), "_mean", sep="")) rm(bins.summary) } - + #21 if(any(simulation_timescales=="monthly") & aon$monthlySPEIEvents){ binSPEI_m <- c(1, 12, 24, 48) #months @@ -724,34 +724,34 @@ if (length(Tables) == 0 || cleanDB) { for(iscale in seq_along(binSPEI_m)) { rvec <- rep(NA, times=4 * length(probs)) temp <- c(temp, paste(rep(paste("SPEI.", binSPEI_m[iscale], "monthsScale.", sep=""), length(rvec)), "Spell", rep(c("Pos.", "Neg."), each=2*length(probs)), rep(rep(c("Duration_months", "Value_none"), each=length(probs)), times=2), "_quantile", rep(probs, times=4), sep="")) - + } rm(binSPEI_m, probs) } - + #---Aggregation: Climatic control #22 if(any(simulation_timescales=="monthly") & aon$monthlyPlantGrowthControls){ temp <- c(temp, paste("NemaniEtAl2003.NPPControl.", c("Temperature", "Water", "Radiation"), "_none_mean", sep="")) } - + #23 if(any(simulation_timescales=="daily") & aon$dailyC4_TempVar){ temp <- c(temp, paste("TeeriEtAl1976.NSadj.", c("TempAirMin.7thMonth_C", "FreezeFreeGrowingPeriod_days", "AccumDegreeDaysAbove65F_daysC"), "_mean", sep="")) } - + #24 if(any(simulation_timescales=="daily") & aon$dailyDegreeDays){ temp <- c(temp, paste("DegreeDays.Base", DegreeDayBase, "C.dailyTmean_Cdays_mean", sep="")) } ##############################################################---Aggregation: Yearly water balance---############################################################## - + #27.0 if(any(simulation_timescales=="yearly") & aon$yearlyAET){ temp <- c(temp, "AET_mm_mean") } - + #27 if(any(simulation_timescales=="yearly") & aon$yearlyWaterBalanceFluxes) { temp <- c(temp, paste(c("Rain_mm", "Rain.ReachingSoil_mm", "Snowfall_mm", "Snowmelt_mm", "Snowloss_mm", "Interception.Total_mm", "Interception.Vegetation_mm", "Interception.Litter_mm", "Evaporation.InterceptedByVegetation_mm", "Evaporation.InterceptedByLitter_mm", "Infiltration_mm", "Runoff_mm", "Evaporation.Total_mm", "Evaporation.Soil.Total_mm", "Evaporation.Soil.topLayers_mm", @@ -770,27 +770,27 @@ if (length(Tables) == 0 || cleanDB) { if(any(simulation_timescales=="daily") & aon$dailyTranspirationExtremes) { temp <- c(temp, paste("Transpiration.", c("DailyMax", "DailyMin"), "_mm_mean", sep=""), paste("Transpiration.", c("DailyMax", "DailyMin"), "_doy_mean", sep="")) } - + #29 if(any(simulation_timescales=="daily") & aon$dailyTotalEvaporationExtremes) { temp <- c(temp, paste("Evaporation.Total.", c("DailyMax", "DailyMin"), "_mm_mean", sep=""), paste("Evaporation.Total.", c("DailyMax", "DailyMin"), "_doy_mean", sep="")) } - + #30 if(any(simulation_timescales=="daily") & aon$dailyDrainageExtremes) { temp <- c(temp, paste("DeepDrainage.", c("DailyMax", "DailyMin"), "_mm_mean", sep=""), paste("DeepDrainage.", c("DailyMax", "DailyMin"), "_doy_mean", sep="")) } - + #31 if(any(simulation_timescales=="daily") & aon$dailyInfiltrationExtremes) { temp <- c(temp, paste("Infiltration.", c("DailyMax", "DailyMin"), "_mm_mean", sep=""), paste("Infiltration.", c("DailyMax", "DailyMin"), "_doy_mean", sep="")) } - + #32 if(any(simulation_timescales=="daily") & aon$dailyAETExtremes) { temp <- c(temp, paste("AET.", c("DailyMax", "DailyMin"), "_mm_mean", sep=""), paste("AET.", c("DailyMax", "DailyMin"), "_doy_mean", sep="")) } - + #33 if(any(simulation_timescales=="daily") & aon$dailySWPextremes){ temp <- c(temp, paste(paste("SWP.", rep(c("topLayers.", "bottomLayers."), each=2), rep(c("DailyMax", "DailyMin"), times=2), sep=""), rep(c("_MPa_mean", "_doy_mean"), each=4), sep="")) @@ -802,7 +802,7 @@ if (length(Tables) == 0 || cleanDB) { ##############################################################---Aggregation: Ecological dryness---############################################################## - + #35a if(any(simulation_timescales=="daily") && aon$dailyNRCS_SoilMoistureTemperatureRegimes){ temp <- c(temp, paste0("NRCS_", c(c("Depth50cmOrImpermeable_cm", "MoistureControlSection_Upper_cm", "MoistureControlSection_Lower_cm", "AnhydrousControlSection_Upper_cm", "AnhydrousControlSection_Lower_cm", "Permafrost_TF"), @@ -810,8 +810,8 @@ if (length(Tables) == 0 || cleanDB) { c("Cumlative_Days_Above_0C", "Cumlative_Days_Above_5C", "Cumlative_DryDays_whenT50Above5C", "Consecutive_MoistDays_whenT50Above8C","Consecutive_DryDays_Summer", "Consecutive_MoistDays_AllYear_AnyLayer", "Cumlative_MoistDays_AllYear_AnyLayer", "Cumlative_DryDays_AllYear_AnyLayer","Consecutive_MoistDays_Winter")), "_mean"), paste0("SoilTemperatureRegime_", c("Hyperthermic", "Thermic", "Mesic", "Frigid", "Cryic", "Gelic")), paste0("SoilMoistureRegime_", c("Anhydrous", "Aridic", "Udic", "Ustic", "Xeric"))))) - } - #35b + } + #35b if(any(simulation_timescales=="daily") && aon$dailyNRCS_Chambers2014_ResilienceResistance && aon$dailyNRCS_SoilMoistureTemperatureRegimes){ cats <- c("Low", "ModeratelyLow", "Moderate", "ModeratelyHigh", "High") temp <- c(temp, paste0("NRCS_Sagebrush", rep(c("Resilience", "Resistance"), each=length(cats)), "_", cats)) @@ -821,9 +821,9 @@ if (length(Tables) == 0 || cleanDB) { if(any(simulation_timescales=="daily") & aon$dailyWetDegreeDays){ temp <- c(temp, paste("WetDegreeDays.SWPcrit", rep(fieldtag_SWPcrit_MPa, each=3), rep(c(".topLayers", ".bottomLayers", ".anyLayer"), times=length(SWPcrit_MPa)), "_Cdays_mean", sep="")) } - + #35.3 - if(any(simulation_timescales=="daily") && aon$dailyThermalDrynessStartEnd){ + if(any(simulation_timescales=="daily") && aon$dailyThermalDrynessStartEnd){ temp <- c(temp, paste0("ThermalDrySoilPeriods_SWPcrit", rep(fieldtag_SWPcrit_MPa, each = 4), "_NSadj_", @@ -832,7 +832,7 @@ if (length(Tables) == 0 || cleanDB) { "_LongestContinuous_days_mean")) } - #35.4 + #35.4 if(any(simulation_timescales=="daily") && aon$dailyThermalSWPConditionCount){ temp <- c(temp, paste0("SoilPeriods_Warm", rep(paste0(rep(c("Dry", "Wet"), times = 3), "_", @@ -845,16 +845,16 @@ if (length(Tables) == 0 || cleanDB) { #36 if(any(simulation_timescales=="monthly") & aon$monthlySWPdryness){ - temp <- c(temp, paste("DrySoilPeriods.SWPcrit", rep(fieldtag_SWPcrit_MPa, times=2), ".NSadj.", rep(c("topLayers", "bottomLayers"), each=length(SWPcrit_MPa)), ".Duration.Total_months_mean", sep=""), + temp <- c(temp, paste("DrySoilPeriods.SWPcrit", rep(fieldtag_SWPcrit_MPa, times=2), ".NSadj.", rep(c("topLayers", "bottomLayers"), each=length(SWPcrit_MPa)), ".Duration.Total_months_mean", sep=""), paste("DrySoilPeriods.SWPcrit", rep(fieldtag_SWPcrit_MPa, times=2), ".NSadj.", rep(c("topLayers", "bottomLayers"), each=length(SWPcrit_MPa)), ".Start_month_mean", sep="")) } - + #37 if(any(simulation_timescales=="daily") & aon$dailySWPdrynessANDwetness){ - temp <- c(temp, paste(rep(c("WetSoilPeriods", "DrySoilPeriods"), each=8), ".SWPcrit", rep(fieldtag_SWPcrit_MPa, each=16), ".NSadj.", c(rep(c("topLayers", "bottomLayers"), times=4), rep(rep(c("topLayers", "bottomLayers"), each=2), times=2)), + temp <- c(temp, paste(rep(c("WetSoilPeriods", "DrySoilPeriods"), each=8), ".SWPcrit", rep(fieldtag_SWPcrit_MPa, each=16), ".NSadj.", c(rep(c("topLayers", "bottomLayers"), times=4), rep(rep(c("topLayers", "bottomLayers"), each=2), times=2)), rep(c(".AnyLayerWet.", ".AllLayersWet.", ".AllLayersDry.", ""), each=4), c(rep(rep(c("Duration.Total_days", "Duration.LongestContinuous_days"), each=2), times=2), rep(c("Duration.Total_days", "Duration.LongestContinuous_days"), times=2), rep(c(".PeriodsForAtLeast10Days.Start_doy", ".PeriodsForAtLeast10Days.End_doy"), times=2)), "_mean", sep="")) } - + #38 if(any(simulation_timescales=="daily") & aon$dailySuitablePeriodsDuration){ quantiles <- c(0.05, 0.5, 0.95) @@ -887,7 +887,7 @@ if (length(Tables) == 0 || cleanDB) { rm(deciles, quantiles, mo_seasons, season.flag) } - + #42 if(any(simulation_timescales=="daily") && aon$dailySWPdrynessEventSizeDistribution) { binSize <- c(1, 8, 15, 29, 57, 183, 367) #closed interval lengths in [days] within a year; NOTE: n_variables is set for binsN == 4 @@ -903,7 +903,7 @@ if (length(Tables) == 0 || cleanDB) { rm(binSize, binsN, binTitle) } - + #43 if(any(simulation_timescales=="daily") && aon$dailySWPdrynessIntensity) { temp <- c(temp, paste0("DrySoilPeriods.SWPcrit", @@ -914,10 +914,10 @@ if (length(Tables) == 0 || cleanDB) { "_mean")) } - #43.2 + #43.2 if(any(simulation_timescales=="daily") && aon$dailyThermalDrynessStress){ - temp <- c(temp, - paste0("Mean10HottestDays_VPD_kPa", + temp <- c(temp, + paste0("Mean10HottestDays_VPD_kPa", c("_mean", "_max", paste0(paste0("_MoistureStress_", "SWPcrit", rep(fieldtag_SWPcrit_MPa, times = 3), "_", @@ -925,40 +925,40 @@ if (length(Tables) == 0 || cleanDB) { ), rep(c("_mean", "_max"), each = length(SWPcrit_MPa)))))) - } + } ##############################################################---Aggregation: Mean monthly values---############################################################## - + #44 if(any(simulation_timescales=="monthly") & aon$monthlyTemp){ temp <- c(temp, paste("TempAir.m", st_mo, "_C_mean", sep="")) } - + #45 if(any(simulation_timescales=="monthly") & aon$monthlyPPT){ temp <- c(temp, paste("Precip.m", st_mo, "_mm_mean", sep="")) } - + #46 if(any(simulation_timescales=="monthly") & aon$monthlySnowpack){ temp <- c(temp, paste("Snowpack.m", st_mo, "_mmSWE_mean", sep="")) } - + #47 if(any(simulation_timescales == "monthly") & aon$monthlySoilTemp) { temp <- c(temp, paste("TempSoil.", c(paste("topLayers.m", st_mo, sep=""), paste("bottomLayers.m", st_mo, sep="")), "_C_mean", sep="")) } - + #48 if(any(simulation_timescales=="monthly") & aon$monthlyRunoff){ temp <- c(temp, paste("Runoff.Total.m", st_mo, "_mm_mean", sep="")) } - + #49 if(any(simulation_timescales=="monthly") & aon$monthlyHydraulicRedistribution){ temp <- c(temp, paste("HydraulicRedistribution.", c(paste("topLayers.m", st_mo, sep=""), paste("bottomLayers.m", st_mo, sep="")), "_mm_mean", sep="")) } - + #50 if(any(simulation_timescales=="monthly") & aon$monthlyInfiltration){ temp <- c(temp, paste("Infiltration.m", st_mo, "_mm_mean", sep="")) @@ -968,12 +968,12 @@ if (length(Tables) == 0 || cleanDB) { if(any(simulation_timescales=="monthly") & aon$monthlyDeepDrainage){ temp <- c(temp, paste("DeepDrainage.m", st_mo, "_mm_mean", sep="")) } - + #52 if(any(simulation_timescales=="monthly") & aon$monthlySWPmatric){ temp <- c(temp, paste("SWPmatric.", c(paste("topLayers.m", st_mo, sep=""), paste("bottomLayers.m", st_mo, sep="")), "_MPa_FromVWCmean", sep="")) } - + #53 a.) if(any(simulation_timescales=="monthly") & aon$monthlyVWCbulk){ temp <- c(temp, paste("VWCbulk.", c(paste("topLayers.m", st_mo, sep=""), paste("bottomLayers.m", st_mo, sep="")), "_mPERm_mean", sep="")) @@ -982,12 +982,12 @@ if (length(Tables) == 0 || cleanDB) { if(any(simulation_timescales=="monthly") & aon$monthlyVWCmatric){ temp <- c(temp, paste("VWCmatric.", c(paste("topLayers.m", st_mo, sep=""), paste("bottomLayers.m", st_mo, sep="")), "_mPERm_mean", sep="")) } - + #54 if(any(simulation_timescales=="monthly") & aon$monthlySWCbulk){ temp <- c(temp, paste("SWCbulk.", c(paste("topLayers.m", st_mo, sep=""), paste("bottomLayers.m", st_mo, sep="")), "_mm_mean", sep="")) } - + #55 if(any(simulation_timescales=="monthly") & aon$monthlySWAbulk){ temp <- c(temp, paste0("SWAbulk_", @@ -995,55 +995,55 @@ if (length(Tables) == 0 || cleanDB) { c(paste0("topLayers_m", st_mo), paste0("bottomLayers_m", st_mo)), "_mm_mean")) } - + #56 if(any(simulation_timescales=="monthly") & aon$monthlyTranspiration){ temp <- c(temp, paste("Transpiration.", c(paste("topLayers.m", st_mo, sep=""), paste("bottomLayers.m", st_mo, sep="")), "_mm_mean", sep="")) } - + #57 if(any(simulation_timescales=="monthly") & aon$monthlySoilEvaporation){ temp <- c(temp, paste("Evaporation.Soil.m", st_mo, "_mm_mean", sep="")) } - + #58 if(any(simulation_timescales=="monthly") & aon$monthlyAET){ temp <- c(temp, paste("AET.m", st_mo, "_mm_mean", sep="")) } - + #59 if(any(simulation_timescales=="monthly") & aon$monthlyPET){ temp <- c(temp, paste("PET.m", st_mo, "_mm_mean", sep="")) } - + #59.2 if (any(simulation_timescales == "monthly") && aon$monthlyVPD) { temp <- c(temp, paste0("VPD_m", st_mo, "_kPa_mean")) } - + #60 if(any(simulation_timescales=="monthly") & aon$monthlyAETratios){ temp <- c(temp, paste(rep(c("TranspToAET.m", "EvapSoilToAET.m"), each=12), st_mo, "_fraction_mean", sep="")) } - + #61 if(any(simulation_timescales=="monthly") & aon$monthlyPETratios){ temp <- c(temp, paste(rep(c("TranspToPET.m", "EvapSoilToPET.m"), each=12), st_mo, "_fraction_mean", sep="")) } ##############################################################---Aggregation: Potential regeneration---############################################################## - + #62 if(any(simulation_timescales=="daily") & aon$dailyRegeneration_bySWPSnow) { temp <- c(temp, "Regeneration.Potential.SuitableYears.NSadj_fraction_mean") } - + #63 if(any(simulation_timescales=="daily") & aon$dailyRegeneration_GISSM & no.species_regeneration > 0){ for(sp in 1:no.species_regeneration){ SeedlingMortality_CausesByYear_colnames <- paste("Seedlings1stSeason.Mortality.", c("UnderneathSnowCover", "ByTmin", "ByTmax", "ByChronicSWPMax", "ByChronicSWPMin", "ByAcuteSWPMin", "DuringStoppedGrowth.DueSnowCover", "DuringStoppedGrowth.DueTmin", "DuringStoppedGrowth.DueTmax"), sep="") - + temp.header1 <- c(paste(temp1 <- c("Germination", "Seedlings1stSeason"), ".SuitableYears_fraction_mean", sep=""), paste(rep(temp1, each=3), ".UnsuitableYears.Successive_years_quantile", rep(c(0.05, 0.5, 0.95), times=2), sep=""), paste(temp1, ".SuitableDaysPerYear_days_mean", sep=""), @@ -1051,23 +1051,23 @@ if (length(Tables) == 0 || cleanDB) { paste("Germination.RestrictedDays.By", c("Tmax", "Tmin", "SWPmin", "AnyCondition", "TimeToGerminate"), "_days_mean", sep=""), "Germination.TimeToGerminate_days_mean", paste(SeedlingMortality_CausesByYear_colnames, "_days_mean", sep="")) - + temp <- c(temp, paste(colnames(param.species_regeneration)[sp], temp.header1, sep=".")) - - #Output for time series: not yet implemented for db + + #Output for time series: not yet implemented for db } } #---Aggregation: done with options - + #---Overall aggregation table #Convert '.' to "_" - temp <- gsub(".", "_", temp, fixed=TRUE) + temp <- gsub(".", "_", temp, fixed=TRUE) dbOverallColumns <- length(temp) - + if (dbOverallColumns > 0) { temp <- paste(paste0("\"", temp, "\""), "REAL", collapse = ", ") - + overallSQL <- paste0("CREATE TABLE \"aggregation_overall\" (", paste(c("\"P_id\" INTEGER", "\"aggfun_id\" INTEGER", @@ -1076,15 +1076,15 @@ if (length(Tables) == 0 || cleanDB) { "PRIMARY KEY (\"P_id\", \"aggfun_id\", \"aggwindow_id\")"), collapse = ", "), ");") - + rs <- RSQLite::dbGetQuery(con, overallSQL) } - + #---Daily aggregation table(s) if (!is.null(output_aggregate_daily)) { doy_colnames <- paste0("doy", formatC(seq_len(366), width = 3, format = "d", flag = "0")) doy_colnames <- paste(paste0("\"", doy_colnames, "\""), "REAL", collapse = ", ") - + dailySQL <- paste(c("\"P_id\" INTEGER", "\"aggfun_id\" INTEGER", "\"aggwindow_id\" INTEGER", @@ -1098,7 +1098,7 @@ if (length(Tables) == 0 || cleanDB) { doy_colnames, "PRIMARY KEY (\"P_id\", \"aggfun_id\", \"aggwindow_id\", \"Soil_Layer\")"), collapse = ", ") - + if (any(simulation_timescales == "daily") && daily_no > 0) { for (doi in seq_len(daily_no)) { if(regexpr("SWAbulk", output_aggregate_daily[doi]) > 0){ @@ -1107,7 +1107,7 @@ if (length(Tables) == 0 || cleanDB) { } else { agg.resp <- output_aggregate_daily[doi] } - + def_dailySQL <- paste0("CREATE TABLE \"", paste0("aggregation_doy_", output_aggregate_daily[doi]), " (", @@ -1118,25 +1118,25 @@ if (length(Tables) == 0 || cleanDB) { dailySQL }, ");") - - rs <- RSQLite::dbGetQuery(con, def_dailySQL) + + rs <- RSQLite::dbGetQuery(con, def_dailySQL) } } } RSQLite::dbDisconnect(con) - + dbOverallColumns } - + dbOverallColumns <- try(.local(), silent=FALSE) - + if (inherits(dbOverallColumns, "try-error")) { temp <- list.files(dir.out, pattern = ".sqlite3", full.names = TRUE) temp <- lapply(temp, unlink) stop(paste("Creation of databases failed:", dbOverallColumns, collapse = ", ")) } - + } else { dbOverallColumns <- length(dbListFields(con, "aggregation_overall")) - 3L # c("P_id", "aggfun_id", "aggwindow_id") }