-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain3.py
executable file
·87 lines (57 loc) · 2.95 KB
/
main3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""
label image based on 5cm point cloud
feature map based on 10cm point cloud
train_set
"""
import numpy as np
import time
import glob
import itertools
import os
from tqdm import tqdm
from utilities import make_if_not_exists
print("----------------------------pre-processing----------------------------\n")
from utilities import get_INTER_and_EXTER_Orientations
from utilities import frustum_culling
from utilities import HPR
from utilities import pointcloud2pixelcoord
from utilities import generation_syntheticImg_5cmbased
from utilities import generation_syntheticImg_10cmbased
path_Imgs = "/run/user/1001/gvfs/smb-share:server=141.58.125.9,share=s-platte/ShuFangwen/data/Nadir_level3_level4_level5/ImgTexture/Level_4/"
path_Ori = "/run/user/1001/gvfs/smb-share:server=141.58.125.9,share=s-platte/ShuFangwen/data/Nadir_level3_level4_level5/Ori/Level_4/"
file_pc_5cm = "/run/user/1001/gvfs/smb-share:server=141.58.125.9,share=s-platte/ShuFangwen/data/Data_11_1_19_5cm/train_xyz_y.txt"
file_XYZ = "/run/user/1001/gvfs/smb-share:server=141.58.125.9,share=s-platte/ShuFangwen/data/features_dense_LiDAR_cloud_10cm/data_splits/xyz_10cm_train.txt"
file_Features = "/run/user/1001/gvfs/smb-share:server=141.58.125.9,share=s-platte/ShuFangwen/data/features_dense_LiDAR_cloud_10cm/data_splits/X_10cm_train.txt"
save_path = "/data/fangwen/results/train_set/"
make_if_not_exists(save_path)
#
pt_data_5cm = np.loadtxt(file_pc_5cm)
pt_xyz = pt_data_5cm[:, :3] # (84254800, 3)
pt_labels = pt_data_5cm[:, 3] # (84254800,)
index = np.asarray([_ for _ in range(pt_labels.shape[0])]).astype(np.int)
pt_xyz2 = np.loadtxt(file_XYZ) # (9559941, 3)
pt_features = np.loadtxt(file_Features) # (9559941, 72)
index2 = np.asarray([_ for _ in range(pt_xyz2.shape[0])]).astype(np.int)
referrence = "/run/user/1001/gvfs/smb-share:server=141.58.125.9,share=s-platte/ShuFangwen/results/level3_nadir/train_set/1_pointlabel/"
img_list = os.listdir(referrence)
path_2 = "/data/fangwen/results/train_set/1_pointlabel"
lis = os.listdir(path_2)
for name in lis:
if name in img_list:
img_list.remove(name)
for i in tqdm(range(len(img_list))):
img_name = img_list[i]
ori_name = img_name.replace("tif", "ori")
# img_name = "CF013540.tif"
# ori_name = "CF013540.ori"
print("processing image: {0}\n".format(img_name))
# get interior and exterior orientation
f, pixel_size, img_width, img_height, K, R, Xc, Yc, Zc = get_INTER_and_EXTER_Orientations(os.path.join(path_Ori,ori_name))
# 5cm
myPoints, myIndex = HPR(Xc, Yc, Zc, pt_xyz, index)
px, py = pointcloud2pixelcoord(R, K, Xc, Yc, Zc, myPoints)
mask = generation_syntheticImg_5cmbased(px, py, myIndex, pt_labels, img_name, save_path, img_width, img_height)
# 10cm
myPoints2, myIndex2 = HPR(Xc, Yc, Zc, pt_xyz2, index2)
px2, py2 = pointcloud2pixelcoord(R, K, Xc, Yc, Zc, myPoints2)
generation_syntheticImg_10cmbased(mask, px2, py2, myIndex2, pt_features, img_name, save_path, img_width, img_height)