-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheuro_model.Rmd
216 lines (163 loc) · 5.93 KB
/
euro_model.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
title: "Euro 2021 Model"
---
```{r data-prep}
library(tidyverse)
library(readxl)
library(cmdstanr)
library(tidybayes)
library(posterior)
library(viridis)
library(pROC)
cmdstanr::register_knitr_engine(override = F)
#Load in data
uefa_nations = read_csv('data/uefa_nations_league_results.csv')
match_day_1 = read_xlsx('predictions/predictions_day_1.xlsx') %>%
drop_na() %>%
mutate(match = map2_chr(team1, team2, ~c(.x, .y) %>% sort %>% paste(collapse = 'v.')))
match_day_2 = read_xlsx('predictions/predictions_day_2.xlsx') %>%
drop_na() %>%
mutate(match = map2_chr(team1, team2, ~c(.x, .y) %>% sort %>% paste(collapse = 'v.')))
match_day_3 = read_xlsx('predictions/predictions_day_3.xlsx') %>%
drop_na() %>%
mutate(match = map2_chr(team1, team2, ~c(.x, .y) %>% sort %>% paste(collapse = 'v.')))
# COndition on match day 1 results
euro_data = read_csv('data/qualifying_round_games.csv') %>%
bind_rows(uefa_nations) %>%
bind_rows(match_day_1) %>%
bind_rows(match_day_2) %>%
bind_rows(match_day_3)
ranking_data = read_csv('data/rankings.csv') %>%
mutate(prior_score = (elo_march_2019 - mean(elo_march_2019))/sd(elo_march_2019)) %>%
arrange(team)
# extract data for model
teams = ranking_data$team
nteams = length(teams)
ngames = nrow(euro_data)
team1 = match(euro_data$team1, teams)
team2 = match(euro_data$team2, teams)
score1 = euro_data$score1
score2 = euro_data$score2
# Used for some models, not all
df = 7
b_mean = 0
b_sd = 0.05
prior_score = ranking_data$prior_score
# Store data in a list to pass to Stan
model_data = list(
nteams = nteams,
ngames = ngames,
team1 = team1,
team2 = team2,
score1 = score1,
score2 = score2,
df = df,
prior_score = prior_score,
b_mean = b_mean,
b_sd = b_sd
)
```
```{r model-fit}
# Instantiate model and run sampling.
model = cmdstan_model('models/euro_raw_dif.stan')
fit = model$sample(model_data, parallel_chains=4, seed=19920908)
```
```{r}
fit$draws('a') %>%
as_draws_df %>%
spread_draws(a[i]) %>%
mean_qi %>%
bind_cols(ranking_data) %>%
arrange(desc(elo_march_2019)) %>%
ggplot(aes(a, fct_reorder(team, a)))+
geom_point()
```
```{r predict-funcs}
a = fit$draws('a') %>% as_draws_df
sigma_y = fit$draws('sigma_y')
est_df = fit$draws('df')
goal_diff = function(teamA, teamB, do_round=T){
set.seed(0)
ixa = match(teamA, str_to_title(teams))
ixb = match(teamB, str_to_title(teams))
ai = a[, ixa]
aj = a[, ixb]
random_outcome = (ai - aj) + rt(nrow(ai-ai), est_df)*sigma_y
if(do_round){
round(pull(random_outcome))
}
else{
pull(random_outcome)
}
}
prob_win = function(teamA, teamB){
random_outcome = goal_diff(teamA, teamB)
mean(random_outcome>0)
}
predict = function(teamA, teamB){
gd = goal_diff(teamA, teamB)
outcome_space = tibble(outcome = c('team1wins', 'team2wins', 'draw'),
result = c(1, -1, 0))
gdr = case_when(gd<0~-1, gd>0~1, T~0)
tibble(result = gdr) %>%
right_join(outcome_space) %>%
group_by(outcome) %>%
summarise(n = n()) %>%
mutate(n = n/sum(n)) %>%
spread(outcome, n)
}
predict_no_draw = function(teamA, teamB){
gd = goal_diff(teamA, teamB)
#No draws in round of 16
# This is a hack
gd = gd[gd!=0]
tibble(team1wins=mean(gd>0), team2wins=mean(gd<0))
}
```
```{r}
# Construct groups for predicting results of the group stage
group_a_teams = tibble(team = c('Italy','Switzerland','Turkey','Wales'), group = 'A')
group_b_teams = tibble(team = c('Belgium','Denmark','Finland','Russia'), group = 'B' )
group_c_teams = tibble(team = c('Austria','Netherlands','North Macedonia', 'Ukraine'), group = 'C')
group_d_teams = tibble(team = c('Croatia', 'Czech', 'England', 'Scotland'), group = 'D' )
group_e_teams = tibble(team = c('Poland', 'Slovakia','Spain', 'Sweden'), group = 'E' )
group_f_teams = tibble(team = c('France','Germany','Hungary','Portugal'), group = 'F')
# Combine individual group dataframes into a single dataframe.
groups = bind_rows(group_a_teams, group_b_teams, group_c_teams, group_d_teams, group_e_teams, group_f_teams) %>%
mutate(i = seq_along(team))
plot_data = full_join(groups, groups, by='group') %>%
filter(i.x!=i.y) %>%
mutate(p_x_win = map2_dbl(team.x, team.y, prob_win),
match = map2_chr(team.x, team.y, ~c(.x, .y) %>% sort %>% paste(collapse = 'v.') )) %>%
rename(Group = group) %>%
mutate(p_x_win = map2_dbl(match, p_x_win, ~if_else(.x %in% c(match_day_1$match, match_day_2$match), NaN, .y)))
group_plot = plot_data %>%
ggplot(aes(team.y, team.x, fill = p_x_win))+
geom_tile(size = 1, color = 'black')+
geom_text(aes(label = scales::percent(p_x_win, accuracy = 0.1)), color = if_else(plot_data$p_x_win<0.5, 'white','black' ), size = 6)+
facet_wrap(~Group, scales = 'free', labeller = label_both)+
scale_fill_continuous(type='viridis',labels = scales::percent, na.value = 'black')+
theme(aspect.ratio = 1,
panel.background = element_blank(),
strip.background = element_rect(fill = 'black'),
strip.text = element_text(color = 'white', size = 12),
plot.title = element_text(size = 22),
plot.subtitle = element_text(size = 12),
panel.spacing = unit(2, "lines")
)+
labs(y='',
x = '',
title = 'Euro 2020',
fill = 'Win Probability',
subtitle = 'Probability Team on y Axis Beats Team on x Axis Conditioned on First Two Match Days')+
guides(fill = F)
ggsave('group_predictions.png', group_plot, dpi = 400, height = 10, width = 15)
```
```{r round-of-16}
team1 = c('Wales','Italy','Netherlands','Belgium','Croatia','France', 'England', 'Sweden')
team2 = c('Denmark','Austria','Czech','Portugal', 'Spain', 'Switzerland', 'Germany','Ukraine')
tibble(team1, team2) %>%
mutate(preds = map2(team1, team2, predict_no_draw)) %>%
unnest(preds)
write_csv('predictions/ro16.csv')
```