-
Notifications
You must be signed in to change notification settings - Fork 11
/
seg_images_in_folder.py
executable file
·351 lines (294 loc) · 14.8 KB
/
seg_images_in_folder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# Written by Dr Daniel Buscombe, Marda Science LLC
# for the USGS Coastal Change Hazards Program
#
# MIT License
#
# Copyright (c) 2021-24, Marda Science LLC
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import sys,os, json
from tqdm import tqdm
from tkinter import filedialog, messagebox
from tkinter import *
profile = 'meta' # meta + predseg
# profile = 'minimal' # predseg
# profile = 'full' # meta + predseg + overlay + probs
##===================================================
#=======================================================
# Import the architectures for following models from doodleverse_utils
# 1. custom_resunet
# 2. custom_unet
# 3. simple_resunet
# 4. simple_unet
# 5. satunet
# 6. custom_resunet
# 7. custom_satunet
# 8. segformer (pre-trained)
def get_model():
if MODEL =='resunet':
model = custom_resunet((TARGET_SIZE[0], TARGET_SIZE[1], N_DATA_BANDS),
FILTERS,
nclasses=NCLASSES, #[NCLASSES+1 if NCLASSES==1 else NCLASSES][0],
kernel_size=(KERNEL,KERNEL),
strides=STRIDE,
dropout=DROPOUT,
dropout_change_per_layer=DROPOUT_CHANGE_PER_LAYER,
dropout_type=DROPOUT_TYPE,
use_dropout_on_upsampling=USE_DROPOUT_ON_UPSAMPLING,
)
elif MODEL=='unet':
model = custom_unet((TARGET_SIZE[0], TARGET_SIZE[1], N_DATA_BANDS),
FILTERS,
nclasses=NCLASSES, #[NCLASSES+1 if NCLASSES==1 else NCLASSES][0],
kernel_size=(KERNEL,KERNEL),
strides=STRIDE,
dropout=DROPOUT,
dropout_change_per_layer=DROPOUT_CHANGE_PER_LAYER,
dropout_type=DROPOUT_TYPE,
use_dropout_on_upsampling=USE_DROPOUT_ON_UPSAMPLING,
)
elif MODEL =='simple_resunet':
model = simple_resunet((TARGET_SIZE[0], TARGET_SIZE[1], N_DATA_BANDS),
kernel = (2, 2),
num_classes=NCLASSES, #[NCLASSES+1 if NCLASSES==1 else NCLASSES][0],
activation="relu",
use_batch_norm=True,
dropout=DROPOUT,
dropout_change_per_layer=DROPOUT_CHANGE_PER_LAYER,
dropout_type=DROPOUT_TYPE,
use_dropout_on_upsampling=USE_DROPOUT_ON_UPSAMPLING,
filters=FILTERS,
num_layers=4,
strides=(1,1))
elif MODEL=='simple_unet':
model = simple_unet((TARGET_SIZE[0], TARGET_SIZE[1], N_DATA_BANDS),
kernel = (2, 2),
num_classes=NCLASSES, #[NCLASSES+1 if NCLASSES==1 else NCLASSES][0],
activation="relu",
use_batch_norm=True,
dropout=DROPOUT,
dropout_change_per_layer=DROPOUT_CHANGE_PER_LAYER,
dropout_type=DROPOUT_TYPE,
use_dropout_on_upsampling=USE_DROPOUT_ON_UPSAMPLING,
filters=FILTERS,
num_layers=4,
strides=(1,1))
elif MODEL=='satunet':
model = custom_satunet((TARGET_SIZE[0], TARGET_SIZE[1], N_DATA_BANDS),
kernel = (2, 2),
num_classes=NCLASSES, #[NCLASSES+1 if NCLASSES==1 else NCLASSES][0],
activation="relu",
use_batch_norm=True,
dropout=DROPOUT,
dropout_change_per_layer=DROPOUT_CHANGE_PER_LAYER,
dropout_type=DROPOUT_TYPE,
use_dropout_on_upsampling=USE_DROPOUT_ON_UPSAMPLING,
filters=FILTERS,
num_layers=4,
strides=(1,1))
elif MODEL=='segformer':
id2label = {}
for k in range(NCLASSES):
id2label[k]=str(k)
model = segformer(id2label,num_classes=NCLASSES)
# model.compile(optimizer='adam')
else:
print("Model must be one of 'unet', 'resunet', 'segformer', or 'satunet'")
sys.exit(2)
return model
if __name__ == "__main__":
#####################################
#### session variables
####################################
#====================================================
#---------------------------------------------------
# Request the folder containing the imagery/npz to segment
# sample_direc: full path to the directory
root = Tk()
root.filename = filedialog.askdirectory(initialdir = "/samples",title = "Select directory of images (or npzs) to segment")
sample_direc = root.filename
print(sample_direc)
root.withdraw()
# Request the folder containing the model weights
# weights: full path to the weights file location
root = Tk()
# root.filename = filedialog.askopenfilename(initialdir = sample_direc, title = "Select FIRST model (.keras) or weights (.h5) file",filetypes = (("keras model file","*.keras"),("h5 files","*.h5*")))
root.filename = filedialog.askopenfilename(initialdir = sample_direc, title = "Select FIRST model weights (.h5) file",filetypes = (("h5 weights file","*.h5"),("all files","*.**")))
weights = root.filename
print(weights)
root.withdraw()
#####################################
#### concatenate models
####################################
# W : list containing all the weight files fill paths
W=[]
W.append(weights)
# Prompt user for more model weights and appends them to the list W that contains all the weights
result = 'yes'
while result == 'yes':
result = messagebox.askquestion("More Weights files?", "More Weights files?", icon='warning')
if result == 'yes':
root = Tk()
# root.filename = filedialog.askopenfilename(title = "Select model (.keras) or weights (.h5) file",filetypes = (("keras model file","*.keras"),("h5 files","*.h5*")))
# root.filename = filedialog.askopenfilename(title = "Select model weights (.h5) file",filetypes = (("h5 files","*.h5*")))
root.filename = filedialog.askopenfilename(initialdir = os.path.dirname(weights), title = "Select NEXT model weights (.h5) file",filetypes = (("h5 weights file","*.h5"),("all files","*.**")))
weights = root.filename
root.withdraw()
W.append(weights)
print(weights)
# For each set of weights in W load them in
M= []; C=[]; T = []
for counter,weights in enumerate(W):
# "fullmodel" is for serving on zoo they are smaller and more portable between systems than traditional h5 files
# gym makes a h5 file, then you use gym to make a "fullmodel" version then zoo can read "fullmodel" version
if 'h5' in weights:
configfile = weights.replace('_fullmodel.h5','.json').replace('weights', 'config')
else:
configfile = weights.replace('.keras','_fullmodel.h5').replace('_fullmodel.h5','.json').replace('weights', 'config')
if os.path.exists(configfile):
with open(configfile) as f:
config = json.load(f)
else:
# Turn the .h5 file into a json so that the data can be loaded into dynamic variables
if 'h5' in weights:
configfile = weights.replace('.h5','.json').replace('weights', 'config')
else:
configfile = weights.replace('.keras','.h5').replace('.h5','.json').replace('weights', 'config')
if os.path.exists(configfile):
with open(configfile) as f:
config = json.load(f)
else:
configfile = weights.replace('_fullmodel_model.keras','.h5').replace('.h5','.json').replace('weights', 'config')
if os.path.exists(configfile):
with open(configfile) as f:
config = json.load(f)
# Dynamically creates all variables from config dict.
# For example configs's {'TARGET_SIZE': [768, 768]} will be created as TARGET_SIZE=[768, 768]
# This is how the program is able to use variables that have never been explicitly defined
for k in config.keys():
exec(k+'=config["'+k+'"]')
if counter==0:
if 'SET_PCI_BUS_ID' not in locals():
SET_PCI_BUS_ID = False
SET_GPU = str(SET_GPU)
if SET_GPU != '-1':
USE_GPU = True
print('Using GPU')
else:
USE_GPU = False
print('Warning: using CPU - model training will be slow')
if len(SET_GPU.split(','))>1:
USE_MULTI_GPU = True
print('Using multiple GPUs')
else:
USE_MULTI_GPU = False
if USE_GPU:
print('Using single GPU device')
else:
print('Using single CPU device')
if USE_GPU == True:
## this could be a bad idea - at least on windows, it reorders the gpus in a way you dont want
if SET_PCI_BUS_ID:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = SET_GPU
from doodleverse_utils.imports import *
from tensorflow.python.client import device_lib
physical_devices = tf.config.experimental.list_physical_devices('GPU')
print(physical_devices)
if physical_devices:
# Restrict TensorFlow to only use the first GPU
try:
tf.config.experimental.set_visible_devices(physical_devices, 'GPU')
except RuntimeError as e:
# Visible devices must be set at program startup
print(e)
else:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
from doodleverse_utils.imports import *
from tensorflow.python.client import device_lib
physical_devices = tf.config.experimental.list_physical_devices('GPU')
print(physical_devices)
if MODEL!='segformer':
### mixed precision
from tensorflow.keras import mixed_precision
try:
mixed_precision.set_global_policy('mixed_float16')
except:
mixed_precision.experimental.set_policy('mixed_float16')
for i in physical_devices:
tf.config.experimental.set_memory_growth(i, True)
print(tf.config.get_visible_devices())
from doodleverse_utils.imports import *
from doodleverse_utils.model_imports import *
from doodleverse_utils.prediction_imports import *
#---------------------------------------------------
# Get the selected model based on the weights file's MODEL key provided
# create the model with the data loaded in from the weights file
print('.....................................')
print('Creating and compiling model {}...'.format(counter))
# if 'h5' in weights:
model = get_model()
try:
model.load_weights(weights.replace('.h5','_fullmodel.h5'))
except:
model.load_weights(weights)
# else:
# model = tf.keras.models.load_model(weights)
M.append(model)
C.append(configfile)
T.append(MODEL)
# metadatadict contains the model name (T) the config file(C) and the model weights(W)
metadatadict = {}
metadatadict['model_weights'] = W
metadatadict['config_files'] = C
metadatadict['model_types'] = T
#####################################
#### read images
####################################
# The following lines prepare the data to be predicted
sample_filenames = sorted(glob(sample_direc+os.sep+'*.*'))
if sample_filenames[0].split('.')[-1]=='npz':
sample_filenames = sorted(tf.io.gfile.glob(sample_direc+os.sep+'*.npz'))
else:
sample_filenames = sorted(tf.io.gfile.glob(sample_direc+os.sep+'*.jpg'))
if len(sample_filenames)==0:
sample_filenames = sorted(glob(sample_direc+os.sep+'*.png'))
print('Number of samples: %i' % (len(sample_filenames)))
#####################################
#### run model on each image in a for loop
####################################
### predict
print('.....................................')
print('Using model for prediction on images ...')
#look for TTA config
if not 'TESTTIMEAUG' in locals():
print("TESTTIMEAUG not found in config file(s). Setting to False")
TESTTIMEAUG = False
if not 'WRITE_MODELMETADATA' in locals():
print("WRITE_MODELMETADATA not found in config file(s). Setting to False")
WRITE_MODELMETADATA = False
if not 'OTSU_THRESHOLD' in locals():
print("OTSU_THRESHOLD not found in config file(s). Setting to False")
OTSU_THRESHOLD = False
## # Import do_seg() from doodleverse_utils to perform the segmentation on the images
for f in tqdm(sample_filenames):
try:
do_seg(f, M, metadatadict, MODEL, sample_direc,NCLASSES,N_DATA_BANDS,TARGET_SIZE,TESTTIMEAUG, WRITE_MODELMETADATA,OTSU_THRESHOLD, profile)
except:
print("{} failed. Check config file, and check the path provided contains valid imagery".format(f))