-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
230 lines (173 loc) · 6.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# this reprository is constructed from CAAE reprository
# for paper Learning face age progression
#
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
from dataloader import *
from misc import *
from models import *
import pickle
from makeLabel import *
import os
## boolean variable indicating whether cuda is available
use_cuda = torch.cuda.is_available()
makeDir()
moveFiles()
# loading Images()
dataloader = loadImgs()
## build model and use cuda if available
if use_cuda:
netE = Encoder().cuda()
netD_img = Dimg().cuda()
netD_z = Dz().cuda()
netG = Generator().cuda()
else:
netE = Encoder()
netD_img = Dimg()
netD_z = Dz()
netG = Generator()
## apply weight initialization
netE.apply(weights_init)
netD_img.apply(weights_init)
netD_z.apply(weights_init)
netG.apply(weights_init)
## build optimizer for each networks
optimizerE = optim.Adam(netE.parameters(),lr=0.0002,betas=(0.5,0.999))
optimizerD_z = optim.Adam(netD_z.parameters(),lr=0.0002,betas=(0.5,0.999))
optimizerD_img = optim.Adam(netD_img.parameters(),lr=0.0002,betas=(0.5,0.999))
optimizerG = optim.Adam(netG.parameters(),lr=0.0002,betas=(0.5,0.999))
## build criterions to calculate loss, and use cuda if available
if use_cuda:
BCE = nn.BCELoss().cuda()
L1 = nn.L1Loss().cuda()
CE = nn.CrossEntropyLoss().cuda()
MSE = nn.MSELoss().cuda()
else:
BCE = nn.BCELoss()
L1 = nn.L1Loss()
CE = nn.CrossEntropyLoss()
MSE = nn.MSELoss()
## fixed variables to regress / progress age
fixed_l = -torch.ones(80*10).view(80,10)
for i,l in enumerate(fixed_l):
l[i//8] = 1
fixed_l_v = Variable(fixed_l)
if use_cuda:
fixed_l_v = fixed_l_v.cuda()
outf='./result_tv_gender'
if os.path.exists(outf):
os.mkdir(outf)
# iterations =50
niter=50
# iters for 50 epochs
for epoch in range(niter):
# enumerates(dataLoader)
for i,(img_data,img_label) in enumerate(dataloader):
# make image variable and class variable
# img_data -->
# previously age was encoded and then decoded
img_data_v = Variable(img_data)
#
# age is stored
img_age = img_label/2
# gender is stored
img_gender = img_label%2*2-1
img_age_v = Variable(img_age).view(-1,1)
img_gender_v = Variable(img_gender.float())
if epoch == 0 and i == 0:
# noise data is given
fixed_noise = img_data[:8].repeat(10,1,1,1)
fixed_g = img_gender[:8].view(-1,1).repeat(10,1)
fixed_img_v = Variable(fixed_noise)
fixed_g_v = Variable(fixed_g)
pickle.dump(fixed_noise,open("fixed_noise.p","wb"))
if use_cuda:
fixed_img_v = fixed_img_v.cuda()
fixed_g_v = fixed_g_v.cuda()
if use_cuda:
img_data_v = img_data_v.cuda()
img_age_v = img_age_v.cuda()
img_gender_v = img_gender_v.cuda()
# make one hot encoding version of label
batchSize = img_data_v.size(0)
# (img_age,batch_size=20,n_l=)
age_ohe = one_hot(img_age,batchSize,n_l,use_cuda)
# prior distribution z_star, real_label, fake_label
z_star = Variable(torch.FloatTensor(batchSize*n_z).uniform_(-1,1)).view(batchSize,n_z)
# real_label
real_label = Variable(torch.ones(batchSize).fill_(1)).view(-1,1)
# fake_label
fake_label = Variable(torch.ones(batchSize).fill_(0)).view(-1,1)
if use_cuda:
z_star, real_label, fake_label = z_star.cuda(),real_label.cuda(),fake_label.cuda()
## train Encoder and Generator with reconstruction loss
netE.zero_grad()
netG.zero_grad()
# EG_loss 1. L1 reconstruction loss
z = netE(img_data_v)
# output is reconstruct
reconst = netG(z,age_ohe,img_gender_v)
#so L1 loss is constructed for output(reconst) and original image data(img_data_v)
EG_L1_loss = L1(reconst,img_data_v)
# EG_loss 2. GAN loss - image
z = netE(img_data_v)
# output of generator is reconst
reconst = netG(z,age_ohe,img_gender_v)
# discriminatoroutput is given as discrimninator_reconst is got from D_img()
D_reconst,_ = netD_img(reconst,age_ohe.view(batchSize,n_l,1,1),img_gender_v.view(batchSize,1,1,1))
# gan loss is given from bce
G_img_loss = BCE(D_reconst,real_label)
## EG_loss 3. GAN loss - z
Dz_prior = netD_z(z_star)
Dz = netD_z(z)
Ez_loss = BCE(Dz,real_label)
## EG_loss 4. TV loss - G
reconst = netG(z.detach(),age_ohe,img_gender_v)
G_tv_loss = TV_LOSS(reconst)
EG_loss = EG_L1_loss + 0.0001*G_img_loss + 0.01*Ez_loss + G_tv_loss
EG_loss.backward()
optimizerE.step()
optimizerG.step()
## train netD_z with prior distribution U(-1,1)
netD_z.zero_grad()
Dz_prior = netD_z(z_star)
Dz = netD_z(z.detach())
Dz_loss = BCE(Dz_prior,real_label)+BCE(Dz,fake_label)
Dz_loss.backward()
optimizerD_z.step()
## train D_img with real images
netD_img.zero_grad()
D_img,D_clf = netD_img(img_data_v,age_ohe.view(batchSize,n_l,1,1),img_gender_v.view(batchSize,1,1,1))
D_reconst,_ = netD_img(reconst.detach(),age_ohe.view(batchSize,n_l,1,1),img_gender_v.view(batchSize,1,1,1))
D_loss = BCE(D_img,real_label)+BCE(D_reconst,fake_label)
D_loss.backward()
optimizerD_img.step()
## save fixed img for every 20 step
fixed_z = netE(fixed_img_v)
fixed_fake = netG(fixed_z,fixed_l_v,fixed_g_v)
vutils.save_image(fixed_fake.data,
'%s/reconst_epoch%03d.png' % (outf,epoch+1),
normalize=True)
## checkpoint
if epoch%10==0:
torch.save(netE.state_dict(),"%s/netE_%03d.pth"%(outf,epoch+1))
torch.save(netG.state_dict(),"%s/netG_%03d.pth"%(outf,epoch+1))
torch.save(netD_img.state_dict(),"%s/netD_img_%03d.pth"%(outf,epoch+1))
torch.save(netD_z.state_dict(),"%s/netD_z_%03d.pth"%(outf,epoch+1))
msg1 = "epoch:{}, step:{}".format(epoch+1,i+1)
msg2 = format("EG_L1_loss:%f"%(EG_L1_loss.data[0]),"<30")+"|"+format("G_img_loss:%f"%(G_img_loss.data[0]),"<30")
msg5 = format("G_tv_loss:%f"%(G_tv_loss.data[0]),"<30")+"|"+"Ez_loss:%f"%(Ez_loss.data[0])
msg3 = format("D_img:%f"%(D_img.mean().data[0]),"<30")+"|"+format("D_reconst:%f"%(D_reconst.mean().data[0]),"<30")\
+"|"+format("D_loss:%f"%(D_loss.data[0]),"<30")
msg4 = format("D_z:%f"%(Dz.mean().data[0]),"<30")+"|"+format("D_z_prior:%f"%(Dz_prior.mean().data[0]),"<30")\
+"|"+format("Dz_loss:%f"%(Dz_loss.data[0]),"<30")
print()
print(msg1)
print(msg2)
print(msg5)
print(msg3)
print(msg4)
print()
print("-"*80)