-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
334 lines (302 loc) · 16.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import argparse
import os
import torch.optim as optim
import torch.utils.data
import torchvision.utils as tvutils
import data_loader as loader
import yaml
import loss
import model
from receptive_cal import *
import utils
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from tqdm import tqdm
import numpy as np
from PIL import Image
from pytorch_wavelets import DWTForward
def saveimgs(img_list, img_name, savepath):
img = img_list[0][0].cpu().numpy().transpose((1,2,0))
img = Image.fromarray(np.uint8(img*255))
img.save(savepath+img_name.split('.')[0]+'.png')
print(savepath+img_name.split('.')[0]+'.png')
# img = img_list[1][0].cpu().numpy().transpose((1,2,0))
# img = Image.fromarray(np.uint8(img*255))
# img.save(savepath+img_name+img_name[1]+'_blur.png')
# print(savepath + img_name + img_name[1]+'_blur.png')
#
# img = img_list[2][0].cpu().numpy().transpose((1,2,0))
# img = Image.fromarray(np.uint8(img*255))
# img.save(savepath+img_name+img_name[2]+'_hf.png')
# print(savepath+img_name+img_name[2]+'_hf.png')
parser = argparse.ArgumentParser(description='Train Downscaling Models')
parser.add_argument('--upscale_factor', default=4, type=int, choices=[4], help='super resolution upscale factor')
parser.add_argument('--crop_size', default=512, type=int, help='training images crop size')
parser.add_argument('--crop_size_val', default=256, type=int, help='validation images crop size')
parser.add_argument('--batch_size', default=16, type=int, help='batch size used')
parser.add_argument('--num_workers', default=4, type=int, help='number of workers used')
parser.add_argument('--num_epochs', default=300, type=int, help='total train epoch number')
parser.add_argument('--num_decay_epochs', default=150, type=int, help='number of epochs during which lr is decayed')
parser.add_argument('--learning_rate', default=0.0002, type=float, help='learning rate')
parser.add_argument('--adam_beta_1', default=0.5, type=float, help='beta_1 for adam optimizer of gen and disc')
parser.add_argument('--val_interval', default=1, type=int, help='validation interval')
parser.add_argument('--val_img_interval', default=30, type=int, help='interval for saving validation images')
parser.add_argument('--save_model_interval', default=30, type=int, help='interval for saving the model')
parser.add_argument('--artifacts', default='gaussian', type=str, help='selecting different artifacts type')
parser.add_argument('--dataset', default='df2k', type=str, help='selecting different datasets')
parser.add_argument('--flips', dest='flips', action='store_true', help='if activated train images are randomly flipped')
parser.add_argument('--rotations', dest='rotations', action='store_true',
help='if activated train images are rotated by a random angle from {0, 90, 180, 270}')
parser.add_argument('--num_res_blocks', default=8, type=int, help='number of ResNet blocks')
parser.add_argument('--ragan', dest='ragan', action='store_true',
help='if activated then RaGAN is used instead of normal GAN')
parser.add_argument('--wgan', dest='wgan', action='store_true',
help='if activated then WGAN-GP is used instead of DCGAN')
parser.add_argument('--no_highpass', dest='highpass', action='store_false',
help='if activated then the highpass filter before the discriminator is omitted')
parser.add_argument('--kernel_size', default=5, type=int, help='kernel size used in transformation for discriminators')
parser.add_argument('--gaussian', dest='gaussian', action='store_true',
help='if activated gaussian filter is used instead of average')
parser.add_argument('--no_per_loss', dest='use_per_loss', action='store_false',
help='if activated no perceptual loss is used')
parser.add_argument('--lpips_rot_flip', dest='lpips_rot_flip', action='store_true',
help='if activated images are randomly flipped and rotated before being fed to lpips')
parser.add_argument('--disc_freq', default=1, type=int, help='number of steps until a discriminator updated is made')
parser.add_argument('--gen_freq', default=1, type=int, help='number of steps until a generator updated is made')
parser.add_argument('--w_col', default=1, type=float, help='weight of color loss')
parser.add_argument('--w_tex', default=0.005, type=float, help='weight of texture loss')
parser.add_argument('--w_per', default=0.01, type=float, help='weight of perceptual loss')
parser.add_argument('--checkpoint', default=None, type=str, help='checkpoint model to start from')
parser.add_argument('--save_path', default=None, type=str, help='additional folder for saving the data')
parser.add_argument('--no_saving', dest='saving', action='store_false',
help='if activated the model and results are not saved')
parser.add_argument('--val_image_path', default=None, type=str, help='checkpoint model to start from')
opt = parser.parse_args()
# fix random seeds
torch.manual_seed(0)
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# prepare data and DataLoaders
# with open('paths.yml', 'r') as stream:
# PATHS = yaml.load(stream)
# val_set = loader.ValDataset(PATHS[opt.dataset][opt.artifacts]['hr']['valid'],
# lr_dir=PATHS[opt.dataset][opt.artifacts]['lr']['valid'], **vars(opt))
# val_loader = DataLoader(dataset=val_set, num_workers=1, batch_size=1, shuffle=False)
# prepare neural networks
model_g = model.Generator(n_res_blocks=opt.num_res_blocks)
print('# generator parameters:', sum(param.numel() for param in model_g.parameters()))
model_d = model.Discriminator(kernel_size=opt.kernel_size, gaussian=opt.gaussian, wgan=opt.wgan, highpass=opt.highpass)
print('# discriminator parameters:', sum(param.numel() for param in model_d.parameters()))
model_d_save = model.NLayerDiscriminator(3, n_layers=2)
DWT2 = DWTForward(J=1, mode='zero', wave='haar').cuda()
g_loss_module = loss.GeneratorLoss(**vars(opt))
# filters are used for generating validation images
filter_low_module = model.FilterLow(kernel_size=opt.kernel_size, gaussian=opt.gaussian, include_pad=False)
filter_high_module = model.FilterHigh(kernel_size=opt.kernel_size, gaussian=opt.gaussian, include_pad=False)
if torch.cuda.is_available():
model_g = model_g.cuda()
model_d = model_d.cuda()
model_d_save = model_d_save.cuda()
filter_low_module = filter_low_module.cuda()
filter_high_module = filter_high_module.cuda()
# # define optimizers
optimizer_g = optim.Adam(model_g.parameters(), lr=opt.learning_rate, betas=[opt.adam_beta_1, 0.999])
optimizer_d = optim.Adam(model_d.parameters(), lr=opt.learning_rate, betas=[opt.adam_beta_1, 0.999])
start_decay = opt.num_epochs - opt.num_decay_epochs
scheduler_rule = lambda e: 1.0 if e < start_decay else 1.0 - max(0.0, float(e - start_decay) / opt.num_decay_epochs)
scheduler_g = optim.lr_scheduler.LambdaLR(optimizer_g, lr_lambda=scheduler_rule)
scheduler_d = optim.lr_scheduler.LambdaLR(optimizer_d, lr_lambda=scheduler_rule)
# load/initialize parameters
if opt.checkpoint is not None:
checkpoint = torch.load(opt.checkpoint)
start_epoch = checkpoint['epoch'] + 1
iteration = checkpoint['iteration'] + 1
model_g.load_state_dict(checkpoint['model_g_state_dict'])
model_d.load_state_dict(checkpoint['models_d_state_dict'])
# model_d_save.load_state_dict(torch.load('/media/4T/Dizzy/BasicSR-master/Final_models/New/DSDG/models/10000_D.pth'))
optimizer_g.load_state_dict(checkpoint['optimizer_g_state_dict'])
optimizer_d.load_state_dict(checkpoint['optimizer_d_state_dict'])
scheduler_g.load_state_dict(checkpoint['scheduler_g_state_dict'])
scheduler_d.load_state_dict(checkpoint['scheduler_d_state_dict'])
print('Continuing training at epoch %d' % start_epoch)
else:
start_epoch = 1
iteration = 1
# prepare tensorboard summary
# summary_path = ''
# if opt.saving:
# if opt.save_path is None:
# save_path = ''
# else:
# save_path = '/' + opt.save_path
# dir_index = 0
# while os.path.isdir('runs/' + save_path + '/' + str(dir_index)):
# dir_index += 1
# summary_path = 'runs' + save_path + '/' + str(dir_index)
# writer = SummaryWriter(summary_path)
# print('Saving summary into directory ' + summary_path + '/')
# val_bar = tqdm(val_loader, desc='[Validation]')
model_g.eval()
val_images = []
with torch.no_grad():
# initialize variables to estimate averages
mse_sum = psnr_sum = rgb_loss_sum = mean_loss_sum = 0
per_loss_sum = col_loss_sum = tex_loss_sum = 0
# validate on each image in the val dataset
for input_imgname in os.listdir(opt.val_image_path):
img_path = opt.val_image_path + input_imgname
input_img = torch.from_numpy(np.ascontiguousarray(np.transpose(np.array(Image.open(img_path)) / 255, (2, 0, 1)))).float()
input_img = input_img.reshape([1]+list(input_img.shape))
if torch.cuda.is_available():
input_img = input_img.cuda()
# target_img = target_img.cuda()
fake_img = torch.clamp(model_g(input_img), min=0, max=1)
# mse = ((fake_img - target_img) ** 2).mean().data
# mse_sum += mse
# psnr_sum += -10 * torch.log10(mse)
# rgb_loss_sum += g_loss_module.rgb_loss(fake_img, target_img)
# mean_loss_sum += g_loss_module.mean_loss(fake_img, target_img)
# per_loss_sum += g_loss_module.perceptual_loss(fake_img, target_img)
# col_loss_sum += g_loss_module.color_loss(fake_img, target_img)
# generate images
blur = filter_low_module(fake_img)
hf = filter_high_module(fake_img)
# sig = torch.nn.Sigmoid().cuda()
# __, hfc = DWT2(fake_img)
#
# hfc = (hfc[0] + 1) / 2
# realorfake = 0
# for i in range(hfc.shape[1]):
# hf = hfc[:, i, :, :, :]
# realorfake = sig(model_d_save(hf)).cpu().detach().numpy()
# currentLayer_h, currentLayer_w = receptive_cal(hf.shape[2]), receptive_cal(hf.shape[3])
# realorfake = getWeights(realorfake, hf, currentLayer_h, currentLayer_w)
# realorfake += realorfake
#
# realorfake /= hfc.shape[1]
# print(hf.max(), hf.min())
# print(blur.max(), blur.min())
# saveimgs([fake_img, blur, hf], input_imgname, opt.save_path)
saveimgs([fake_img], input_imgname, opt.save_path)
# np.save(opt.save_path+'RealorFake/'+input_imgname.split('.')[0]+'.npy', realorfake)
# val_image_list = [
# # utils.display_transform()(target_img.data.cpu().squeeze(0)),
# utils.display_transform()(fake_img.data.cpu().squeeze(0)),
# # utils.display_transform()(disc_img.squeeze(0)),
# utils.display_transform()(blur.data.cpu().squeeze(0)),
# utils.display_transform()(hf.data.cpu().squeeze(0))]
# n_val_images = len(val_image_list)
# val_images.extend(val_image_list)
# for img in val_images:
# if opt.saving and len(val_loader) > 0:
# # save validation values
# writer.add_scalar('val/mse', mse_sum/len(val_set), iteration)
# writer.add_scalar('val/psnr', psnr_sum / len(val_set), iteration)
# writer.add_scalar('val/rgb_error', rgb_loss_sum / len(val_set), iteration)
# writer.add_scalar('val/mean_error', mean_loss_sum / len(val_set), iteration)
# writer.add_scalar('val/perceptual_error', per_loss_sum / len(val_set), iteration)
# writer.add_scalar('val/color_error', col_loss_sum / len(val_set), iteration)
# save image results
# val_images = torch.stack(val_images)
# val_images = torch.chunk(val_images, val_images.size(0) // (n_val_images * 5))
# val_save_bar = tqdm(val_images, desc='[Saving results]')
# for index, image in val_images:
# image = tvutils.make_grid(image, nrow=n_val_images, padding=5)
# out_path = 'val/target_fake_tex_disc_f-wav_t-wav_' + str(index)
# writer.add_image('val/target_fake_crop_low_high_' + str(index), image, iteration)
# # training iteration
# for epoch in range(start_epoch, opt.num_epochs + 1):
# train_bar = tqdm(train_loader, desc='[%d/%d]' % (epoch, opt.num_epochs))
# model_g.train()
# model_d.train()
#
# for input_img, disc_img in train_bar:
# iteration += 1
# if torch.cuda.is_available():
# input_img = input_img.cuda()
# disc_img = disc_img.cuda()
#
# # Estimate scores of fake and real images
# fake_img = model_g(input_img)
# if opt.ragan:
# real_tex = model_d(disc_img, fake_img)
# fake_tex = model_d(fake_img, disc_img)
# else:
# real_tex = model_d(disc_img)
# fake_tex = model_d(fake_img)
#
# # Update Discriminator network
# if iteration % opt.disc_freq == 0:
# # calculate gradient penalty
# if opt.wgan:
# rand = torch.rand(1).item()
# sample = rand * disc_img + (1 - rand) * fake_img
# gp_tex = model_d(sample)
# gradient = torch.autograd.grad(gp_tex.mean(), sample, create_graph=True)[0]
# grad_pen = 10 * (gradient.norm() - 1) ** 2
# else:
# grad_pen = None
# # update discriminator
# model_d.zero_grad()
# d_tex_loss = loss.discriminator_loss(real_tex, fake_tex, wasserstein=opt.wgan, grad_penalties=grad_pen)
# d_tex_loss.backward(retain_graph=True)
# optimizer_d.step()
# # save data to tensorboard
# if opt.saving:
# writer.add_scalar('loss/d_tex_loss', d_tex_loss, iteration)
# if opt.wgan:
# writer.add_scalar('disc_score/gradient_penalty', grad_pen.mean().data.item(), iteration)
#
# # Update Generator network
# if iteration % opt.gen_freq == 0:
# # update discriminator
# model_g.zero_grad()
# g_loss = g_loss_module(fake_tex, fake_img, input_img)
# assert not torch.isnan(g_loss), 'Generator loss returns NaN values'
# g_loss.backward()
# optimizer_g.step()
# # save data to tensorboard
# if opt.saving:
# writer.add_scalar('loss/perceptual_loss', g_loss_module.last_per_loss, iteration)
# writer.add_scalar('loss/color_loss', g_loss_module.last_col_loss, iteration)
# writer.add_scalar('loss/g_tex_loss', g_loss_module.last_tex_loss, iteration)
# writer.add_scalar('loss/g_overall_loss', g_loss, iteration)
#
# # save data to tensorboard
# rgb_loss = g_loss_module.rgb_loss(fake_img, input_img)
# mean_loss = g_loss_module.mean_loss(fake_img, input_img)
# if opt.saving:
# writer.add_scalar('loss/rgb_loss', rgb_loss, iteration)
# writer.add_scalar('loss/mean_loss', mean_loss, iteration)
# writer.add_scalar('disc_score/real', real_tex.mean().data.item(), iteration)
# writer.add_scalar('disc_score/fake', fake_tex.mean().data.item(), iteration)
# train_bar.set_description(desc='[%d/%d]' % (epoch, opt.num_epochs))
#
# scheduler_d.step()
# scheduler_g.step()
# if opt.saving:
# writer.add_scalar('param/learning_rate', torch.Tensor(scheduler_g.get_lr()), epoch)
#
# # validation step
# if epoch % opt.val_interval == 0 or epoch % opt.val_img_interval == 0:
#
#
# # save model parameters
# if opt.saving and epoch % opt.save_model_interval == 0 and epoch != 0:
# path = './checkpoints/' + save_path + '/iteration_' + str(iteration) + '.tar'
# if not os.path.exists(os.path.dirname(path)):
# os.makedirs(os.path.dirname(path))
# state_dict = {
# 'epoch': epoch,
# 'iteration': iteration,
# 'model_g_state_dict': model_g.state_dict(),
# 'models_d_state_dict': model_d.state_dict(),
# 'optimizer_g_state_dict': optimizer_g.state_dict(),
# 'optimizer_d_state_dict': optimizer_d.state_dict(),
# 'scheduler_g_state_dict': scheduler_g.state_dict(),
# 'scheduler_d_state_dict': scheduler_d.state_dict(),
# }
# torch.save(state_dict, path)
# path = './checkpoints' + save_path + '/last_iteration.tar'
# torch.save(state_dict, path)