-
Notifications
You must be signed in to change notification settings - Fork 1
/
example.py
executable file
·199 lines (127 loc) · 5.25 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#!/usr/bin/env python3
import sys
import directdm as ddm
#----------------------------------------------------#
# #
# Template python module for the DirectDM.py package #
# #
#----------------------------------------------------#
# Set the EFT scale
scale = 100 # GeV
# Give initial conditions for Wilson coefficients as a python dictionary:
dict1 = {'C61u' : 1./scale**2, 'C62u' : 1./scale**2, 'C61d' : 1./scale**2}
# The allowed keys depend on the DM type (Dirac, Majorana, ... )
# and the number of active quark flavors. They can be printed via
# 3-flavor, Dirac:
print('Allowed keys for Dirac DM in the three-flavor theory:\n')
print(ddm.WC_3f({}, "D").wc_name_list)
print('\n')
# 3-flavor, Majorana:
print('Allowed keys for Majorana DM in the three-flavor theory:\n')
print(ddm.WC_3f({}, "M").wc_name_list)
print('\n')
# 5-flavor, complex scalar:
print('Allowed keys for complex scalar DM in the flavor-flavor theory:\n')
print(ddm.WC_5f({}, "C").wc_name_list)
print('\n')
#-----------------------#
# Three-flavor examples #
#-----------------------#
# Initialize an instance of the 3-flavor Wilson coefficient class.
#
# Mandatory first argument is the dictionary for Wilson coefficients.
# Optional argument id the DM-Type "D" [default], "M", "C", "R"
wc3f = ddm.WC_3f(dict1, "D")
# The main method is to output the NR coefficients.
#
# The mandatory arguments are the DM mass and the momentum transfer in units of GeV.
#
# Optional arguments are RGE and NLO which take the Boolean values "True" or "False".
#
# The defaults are RGE=True, NLO=False.
#
# RGE=False switches off QCD and QED running.
# NLO=True includes the coherently enhanced NLO terms for the tensor operators.
print('The NR coefficients :\n')
print(wc3f.cNR(100, 50e-3))
print('\n')
# Finally, you can write a list of NR coefficients that can be loaded into the Mathematica package "DMFormFactor" [arxiv:1308.6288]:
wc3f.write_mma(100, 50e-3, filename='test_wc3.m')
print('\n')
print('-----------------------------------------')
print('\n')
#----------------------#
# Five-flavor examples #
#----------------------#
# The classes for four- and five flavor Wilson coefficients work basically the same as the three-flavor class.
# E.g. Dirac DM:
wc5f = ddm.WC_5f(dict1, "D")
# If you like, you can do running:
print('Run in five-flavor theory from MZ to mb(mb) (Dirac DM):\n')
print(wc5f.run())
print('\n')
# And matching:
print('Match from five-flavor to four-flavor theory at scale mb(mb) (Dirac DM):\n')
print(wc5f.match())
print('\n')
print('\n')
print('-----------------------------------------')
print('\n')
# Or complex scalar DM:
wc5f = ddm.WC_5f(dict1, "C")
# If you like, you can do running:
print('Run in five-flavor theory from MZ to mb(mb) (complex scalar DM):\n')
print(wc5f.run())
print('\n')
# Or Majorana DM:
dict2 = {'C62u' : 1./scale**2, 'C62d' : 1./scale**2}
wc5f = ddm.WC_5f(dict2, "M")
# If you like, you can do running:
print('Run in five-flavor theory from MZ to mb(mb) (Majorana DM):\n')
print(wc5f.run())
print('\n')
print('\n')
print('-----------------------------------------')
print('\n')
#-----------------------------------------#
# Examples with dimension-seven operators #
#-----------------------------------------#
# Low-energy coefficients for dimension-seven operators with derivatives
dict7 = {'C715u' : 1./scale**3, 'C715d' : 1./scale**3, 'C715s' : 1./scale**3, 'C716u' : 1./scale**3, 'C716d' : 1./scale**3, 'C716s' : 1./scale**3, }
wc_7 = ddm.WC_5f(dict7, DM_type="D")
print('Low-energy coefficients from dimension-seven operators, Dirac DM:\n')
print(wc_7.cNR(100, 50e-3))
print('\n')
# Rayleigh operators currently only get a matrix element from QED mixing into scalar-current operators:
dict_rayleigh = {'C711' : 1./scale**3, 'C712' : 1./scale**3, 'C713' : 1./scale**3, 'C714' : 1./scale**3}
wc_rayleigh = ddm.WC_5f(dict_rayleigh, DM_type="D")
print('Low-energy coefficients from Rayleigh operators, from QED mixing:\n')
print(wc_rayleigh.cNR(100, 50e-3, RGE=True))
print('\n')
print('If you switch of QED, the low-energy coefficients are zero:\n')
print(wc_rayleigh.cNR(100, 50e-3, RGE=False))
print('\n')
#-------------------------------------------------------------#
# Example with Wilson coefficients in the e/w unbroken theory #
#-------------------------------------------------------------#
# For the Wilson coefficients above the weak scale, several input parameters need to be specified, in this order:
#
# The dictionary of initial conditions at scale Lambda
# The NP scale Lambda in GeV
# The DM hypercharge Ychi
# The dimension of the DM SU(2) representation.
# Note that Wilson coefficients above the weak scale do *not* include the factor 1/Lambda^n in their definition!
# E.g.
wc_ew = ddm.WC_EW({'C663' : -1./1000**2 , 'C673' : 1./1000**2 , 'C683' : 1.}, 0, 3)
# If you like, you can do running:
print('Run in unbroken e/w theory from 1000 to MZ:\n')
print(wc_ew.run(mu_Lambda=1000))
print('\n')
# Of course, you can get the low-energy coefficients cNR, as usual:
print('Low-energy coefficients from e/w theory:\n')
print(wc_ew.cNR(100, 50e-3, mu_Lambda=1000))
print('\n')
print('\n')
print('-----------------------------------------')
print('\n')
sys.exit()