forked from ychfan/tf_estimator_barebone
-
Notifications
You must be signed in to change notification settings - Fork 39
/
trainer.py
148 lines (139 loc) · 4.23 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""Trainer
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import argparse
import importlib
import tensorflow as tf
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataset',
help='Dataset name',
default=None,
type=str,
)
parser.add_argument(
'--model',
help='Model name',
default=None,
type=str,
)
parser.add_argument(
'--job-dir',
help='GCS location to write checkpoints and export models',
required=True)
# Experiment arguments
parser.add_argument(
'--save-checkpoints-steps',
help='Number of steps to save checkpoint',
default=1000,
type=int)
parser.add_argument(
'--train-steps',
help='Number of steps to run training totally',
default=None,
type=int)
parser.add_argument(
'--eval-steps',
help='Number of steps to run evaluation for at each checkpoint',
default=None,
type=int)
parser.add_argument(
'--save-summary-steps',
help='Number of steps to save summary',
default=100,
type=int)
parser.add_argument(
'--random-seed',
help='Random seed for TensorFlow',
default=None,
type=int)
# Performance tuning parameters
parser.add_argument(
'--allow-growth',
help='Whether to enable allow_growth in GPU_Options',
default=False,
action='store_true')
parser.add_argument(
'--xla',
help='Whether to enable XLA auto-jit compilation',
default=False,
action='store_true')
parser.add_argument(
'--save-profiling-steps',
help='Number of steps to save profiling',
default=None,
type=int)
# Argument to turn on all logging
parser.add_argument(
'--verbosity',
choices=['DEBUG', 'ERROR', 'FATAL', 'INFO', 'WARN'],
default='INFO',
help='Set logging verbosity')
# Parse arguments
args, _ = parser.parse_known_args()
dataset_module = importlib.import_module('datasets.' + args.dataset
if args.dataset else 'datasets')
dataset_module.update_argparser(parser)
model_module = importlib.import_module('models.' + args.model
if args.model else 'models')
model_module.update_argparser(parser)
hparams = parser.parse_args()
print(hparams)
# Set python level verbosity
tf.logging.set_verbosity(hparams.verbosity)
# Set C++ Graph Execution level verbosity
os.environ['TF_CPP_MIN_LOG_LEVEL'] = str(
tf.logging.__dict__[hparams.verbosity] / 10)
# Run the training job
model_fn = getattr(model_module, 'model_fn')
input_fn = getattr(dataset_module, 'input_fn')
train_input_fn = lambda: input_fn(
mode=tf.estimator.ModeKeys.TRAIN,
params=hparams,
)
eval_input_fn = lambda: input_fn(
mode=tf.estimator.ModeKeys.EVAL,
params=hparams,
)
predict_input_fn = getattr(dataset_module, 'predict_input_fn', None)
session_config = tf.ConfigProto()
session_config.gpu_options.allow_growth = hparams.allow_growth
if hparams.xla:
session_config.graph_options.optimizer_options.global_jit_level = (
tf.OptimizerOptions.ON_1)
run_config = tf.estimator.RunConfig(
model_dir=hparams.job_dir,
tf_random_seed=hparams.random_seed,
save_summary_steps=hparams.save_summary_steps,
save_checkpoints_steps=hparams.save_checkpoints_steps,
session_config=session_config,
)
estimator = tf.estimator.Estimator(
model_fn=model_fn,
config=run_config,
params=hparams,
)
hooks = []
if hparams.save_profiling_steps:
hooks.append(
tf.train.ProfilerHook(
save_steps=hparams.save_profiling_steps,
output_dir=hparams.job_dir,
))
train_spec = tf.estimator.TrainSpec(
input_fn=train_input_fn,
max_steps=hparams.train_steps,
hooks=hooks,
)
eval_spec = tf.estimator.EvalSpec(
input_fn=eval_input_fn,
steps=hparams.eval_steps,
exporters=tf.estimator.LatestExporter(
name='Servo', serving_input_receiver_fn=predict_input_fn)
if predict_input_fn else None,
)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)