Skip to content

DigitalPhonetics/Intrinsic-Subgraph-Generation-for-VQA

Repository files navigation

Intrinsic Subgraph Generation for Interpretable Graph based Visual Question Answering

Paper Links

Discrete Subgraph Sampling
arXiv Generic badge

Intrinsic Subgraph Generation
arXiv Generic badge

Approach

Architecture

Documentation

Documentation

Installation

Python Environment

Create a virtual python environment with e.g. conda:

conda create --name isubgvqa python=3.11

Activate the environment

conda activate isubgvqa

PyTorch

Please install PyTorch

pip install torch torchvision torchaudio

PyG (PyTorch-Geometric)

Please install PyG

pip install torch_geometric

Install optional packages:

pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.2.0+cu121.html

Spacy

Install spacy and download en_core_web_sm

pip install -U pip setuptools wheel
pip install -U spacy
python -m spacy download en_core_web_sm

Citations

@article{tilli2024discretesubgraphsamplinginterpretable,
      title={Discrete Subgraph Sampling for Interpretable Graph based Visual Question Answering}, 
      author={Pascal Tilli and Ngoc Thang Vu},
      year={2024},
      eprint={2412.08263},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2412.08263}, 
}

@inproceedings{tilli-vu-2024-intrinsic-subgraph,
    title = "Intrinsic Subgraph Generation for Interpretable Graph Based Visual Question Answering",
    author = "Tilli, Pascal  and Vu, Ngoc Thang",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    month = may,
    year = "2024",
    address = "Torino, Italy",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.lrec-main.806",
    pages = "9204--9223",
}

GitHub References

IMLE
https://github.com/uclnlp/torch-imle

AIMLE
https://github.com/EdinburghNLP/torch-adaptive-imle

Gumbel / Simple
https://github.com/chendiqian/PR-MPNN/