diff --git a/Riya_Agrahari.ipynb b/Riya_Agrahari.ipynb
new file mode 100644
index 0000000..0909934
--- /dev/null
+++ b/Riya_Agrahari.ipynb
@@ -0,0 +1,1273 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "id": "MWuMU9_NxGPR"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import sklearn"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from sklearn.datasets import load_boston\n",
+ "df = load_boston()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "T2M8Ialmx7cN",
+ "outputId": "1a56c068-21ef-4335-f540-cea63954e856"
+ },
+ "execution_count": 2,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function load_boston is deprecated; `load_boston` is deprecated in 1.0 and will be removed in 1.2.\n",
+ "\n",
+ " The Boston housing prices dataset has an ethical problem. You can refer to\n",
+ " the documentation of this function for further details.\n",
+ "\n",
+ " The scikit-learn maintainers therefore strongly discourage the use of this\n",
+ " dataset unless the purpose of the code is to study and educate about\n",
+ " ethical issues in data science and machine learning.\n",
+ "\n",
+ " In this special case, you can fetch the dataset from the original\n",
+ " source::\n",
+ "\n",
+ " import pandas as pd\n",
+ " import numpy as np\n",
+ "\n",
+ "\n",
+ " data_url = \"http://lib.stat.cmu.edu/datasets/boston\"\n",
+ " raw_df = pd.read_csv(data_url, sep=\"\\s+\", skiprows=22, header=None)\n",
+ " data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])\n",
+ " target = raw_df.values[1::2, 2]\n",
+ "\n",
+ " Alternative datasets include the California housing dataset (i.e.\n",
+ " :func:`~sklearn.datasets.fetch_california_housing`) and the Ames housing\n",
+ " dataset. You can load the datasets as follows::\n",
+ "\n",
+ " from sklearn.datasets import fetch_california_housing\n",
+ " housing = fetch_california_housing()\n",
+ "\n",
+ " for the California housing dataset and::\n",
+ "\n",
+ " from sklearn.datasets import fetch_openml\n",
+ " housing = fetch_openml(name=\"house_prices\", as_frame=True)\n",
+ "\n",
+ " for the Ames housing dataset.\n",
+ " \n",
+ " warnings.warn(msg, category=FutureWarning)\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.keys()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "4Wz5kUKjypxx",
+ "outputId": "1d41e145-fd55-4cc2-dba9-bcc6c8f84413"
+ },
+ "execution_count": 4,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename', 'data_module'])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 4
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(df.DESCR)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "ZtK71kP6zpz7",
+ "outputId": "9d1f63b5-c20e-4ea8-8bb3-4021e0a5359d"
+ },
+ "execution_count": 5,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ ".. _boston_dataset:\n",
+ "\n",
+ "Boston house prices dataset\n",
+ "---------------------------\n",
+ "\n",
+ "**Data Set Characteristics:** \n",
+ "\n",
+ " :Number of Instances: 506 \n",
+ "\n",
+ " :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.\n",
+ "\n",
+ " :Attribute Information (in order):\n",
+ " - CRIM per capita crime rate by town\n",
+ " - ZN proportion of residential land zoned for lots over 25,000 sq.ft.\n",
+ " - INDUS proportion of non-retail business acres per town\n",
+ " - CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n",
+ " - NOX nitric oxides concentration (parts per 10 million)\n",
+ " - RM average number of rooms per dwelling\n",
+ " - AGE proportion of owner-occupied units built prior to 1940\n",
+ " - DIS weighted distances to five Boston employment centres\n",
+ " - RAD index of accessibility to radial highways\n",
+ " - TAX full-value property-tax rate per $10,000\n",
+ " - PTRATIO pupil-teacher ratio by town\n",
+ " - B 1000(Bk - 0.63)^2 where Bk is the proportion of black people by town\n",
+ " - LSTAT % lower status of the population\n",
+ " - MEDV Median value of owner-occupied homes in $1000's\n",
+ "\n",
+ " :Missing Attribute Values: None\n",
+ "\n",
+ " :Creator: Harrison, D. and Rubinfeld, D.L.\n",
+ "\n",
+ "This is a copy of UCI ML housing dataset.\n",
+ "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/\n",
+ "\n",
+ "\n",
+ "This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.\n",
+ "\n",
+ "The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\n",
+ "prices and the demand for clean air', J. Environ. Economics & Management,\n",
+ "vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics\n",
+ "...', Wiley, 1980. N.B. Various transformations are used in the table on\n",
+ "pages 244-261 of the latter.\n",
+ "\n",
+ "The Boston house-price data has been used in many machine learning papers that address regression\n",
+ "problems. \n",
+ " \n",
+ ".. topic:: References\n",
+ "\n",
+ " - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.\n",
+ " - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.\n",
+ "\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(df.filename)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "UxLYtQmEz6iy",
+ "outputId": "a6b6f3ce-ad31-4468-f6b4-7ca812004a3d"
+ },
+ "execution_count": 6,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "boston_house_prices.csv\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(df.target)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "EPQ5yW9m0NP6",
+ "outputId": "e8ebe20b-b097-4474-d516-f129f57a2322"
+ },
+ "execution_count": 7,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "[24. 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 15. 18.9 21.7 20.4\n",
+ " 18.2 19.9 23.1 17.5 20.2 18.2 13.6 19.6 15.2 14.5 15.6 13.9 16.6 14.8\n",
+ " 18.4 21. 12.7 14.5 13.2 13.1 13.5 18.9 20. 21. 24.7 30.8 34.9 26.6\n",
+ " 25.3 24.7 21.2 19.3 20. 16.6 14.4 19.4 19.7 20.5 25. 23.4 18.9 35.4\n",
+ " 24.7 31.6 23.3 19.6 18.7 16. 22.2 25. 33. 23.5 19.4 22. 17.4 20.9\n",
+ " 24.2 21.7 22.8 23.4 24.1 21.4 20. 20.8 21.2 20.3 28. 23.9 24.8 22.9\n",
+ " 23.9 26.6 22.5 22.2 23.6 28.7 22.6 22. 22.9 25. 20.6 28.4 21.4 38.7\n",
+ " 43.8 33.2 27.5 26.5 18.6 19.3 20.1 19.5 19.5 20.4 19.8 19.4 21.7 22.8\n",
+ " 18.8 18.7 18.5 18.3 21.2 19.2 20.4 19.3 22. 20.3 20.5 17.3 18.8 21.4\n",
+ " 15.7 16.2 18. 14.3 19.2 19.6 23. 18.4 15.6 18.1 17.4 17.1 13.3 17.8\n",
+ " 14. 14.4 13.4 15.6 11.8 13.8 15.6 14.6 17.8 15.4 21.5 19.6 15.3 19.4\n",
+ " 17. 15.6 13.1 41.3 24.3 23.3 27. 50. 50. 50. 22.7 25. 50. 23.8\n",
+ " 23.8 22.3 17.4 19.1 23.1 23.6 22.6 29.4 23.2 24.6 29.9 37.2 39.8 36.2\n",
+ " 37.9 32.5 26.4 29.6 50. 32. 29.8 34.9 37. 30.5 36.4 31.1 29.1 50.\n",
+ " 33.3 30.3 34.6 34.9 32.9 24.1 42.3 48.5 50. 22.6 24.4 22.5 24.4 20.\n",
+ " 21.7 19.3 22.4 28.1 23.7 25. 23.3 28.7 21.5 23. 26.7 21.7 27.5 30.1\n",
+ " 44.8 50. 37.6 31.6 46.7 31.5 24.3 31.7 41.7 48.3 29. 24. 25.1 31.5\n",
+ " 23.7 23.3 22. 20.1 22.2 23.7 17.6 18.5 24.3 20.5 24.5 26.2 24.4 24.8\n",
+ " 29.6 42.8 21.9 20.9 44. 50. 36. 30.1 33.8 43.1 48.8 31. 36.5 22.8\n",
+ " 30.7 50. 43.5 20.7 21.1 25.2 24.4 35.2 32.4 32. 33.2 33.1 29.1 35.1\n",
+ " 45.4 35.4 46. 50. 32.2 22. 20.1 23.2 22.3 24.8 28.5 37.3 27.9 23.9\n",
+ " 21.7 28.6 27.1 20.3 22.5 29. 24.8 22. 26.4 33.1 36.1 28.4 33.4 28.2\n",
+ " 22.8 20.3 16.1 22.1 19.4 21.6 23.8 16.2 17.8 19.8 23.1 21. 23.8 23.1\n",
+ " 20.4 18.5 25. 24.6 23. 22.2 19.3 22.6 19.8 17.1 19.4 22.2 20.7 21.1\n",
+ " 19.5 18.5 20.6 19. 18.7 32.7 16.5 23.9 31.2 17.5 17.2 23.1 24.5 26.6\n",
+ " 22.9 24.1 18.6 30.1 18.2 20.6 17.8 21.7 22.7 22.6 25. 19.9 20.8 16.8\n",
+ " 21.9 27.5 21.9 23.1 50. 50. 50. 50. 50. 13.8 13.8 15. 13.9 13.3\n",
+ " 13.1 10.2 10.4 10.9 11.3 12.3 8.8 7.2 10.5 7.4 10.2 11.5 15.1 23.2\n",
+ " 9.7 13.8 12.7 13.1 12.5 8.5 5. 6.3 5.6 7.2 12.1 8.3 8.5 5.\n",
+ " 11.9 27.9 17.2 27.5 15. 17.2 17.9 16.3 7. 7.2 7.5 10.4 8.8 8.4\n",
+ " 16.7 14.2 20.8 13.4 11.7 8.3 10.2 10.9 11. 9.5 14.5 14.1 16.1 14.3\n",
+ " 11.7 13.4 9.6 8.7 8.4 12.8 10.5 17.1 18.4 15.4 10.8 11.8 14.9 12.6\n",
+ " 14.1 13. 13.4 15.2 16.1 17.8 14.9 14.1 12.7 13.5 14.9 20. 16.4 17.7\n",
+ " 19.5 20.2 21.4 19.9 19. 19.1 19.1 20.1 19.9 19.6 23.2 29.8 13.8 13.3\n",
+ " 16.7 12. 14.6 21.4 23. 23.7 25. 21.8 20.6 21.2 19.1 20.6 15.2 7.\n",
+ " 8.1 13.6 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9\n",
+ " 22. 11.9]\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "boston= pd.DataFrame(df.data, columns = df.feature_names)\n",
+ "boston.head()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 270
+ },
+ "id": "po5gzj1z0cYq",
+ "outputId": "4b56e29a-8fdf-4f77-fa9d-5528dd7a2451"
+ },
+ "execution_count": 11,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \\\n",
+ "0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 \n",
+ "1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 \n",
+ "2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 \n",
+ "3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 \n",
+ "4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 \n",
+ "\n",
+ " PTRATIO B LSTAT \n",
+ "0 15.3 396.90 4.98 \n",
+ "1 17.8 396.90 9.14 \n",
+ "2 17.8 392.83 4.03 \n",
+ "3 18.7 394.63 2.94 \n",
+ "4 18.7 396.90 5.33 "
+ ],
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " CRIM | \n",
+ " ZN | \n",
+ " INDUS | \n",
+ " CHAS | \n",
+ " NOX | \n",
+ " RM | \n",
+ " AGE | \n",
+ " DIS | \n",
+ " RAD | \n",
+ " TAX | \n",
+ " PTRATIO | \n",
+ " B | \n",
+ " LSTAT | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.00632 | \n",
+ " 18.0 | \n",
+ " 2.31 | \n",
+ " 0.0 | \n",
+ " 0.538 | \n",
+ " 6.575 | \n",
+ " 65.2 | \n",
+ " 4.0900 | \n",
+ " 1.0 | \n",
+ " 296.0 | \n",
+ " 15.3 | \n",
+ " 396.90 | \n",
+ " 4.98 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.02731 | \n",
+ " 0.0 | \n",
+ " 7.07 | \n",
+ " 0.0 | \n",
+ " 0.469 | \n",
+ " 6.421 | \n",
+ " 78.9 | \n",
+ " 4.9671 | \n",
+ " 2.0 | \n",
+ " 242.0 | \n",
+ " 17.8 | \n",
+ " 396.90 | \n",
+ " 9.14 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.02729 | \n",
+ " 0.0 | \n",
+ " 7.07 | \n",
+ " 0.0 | \n",
+ " 0.469 | \n",
+ " 7.185 | \n",
+ " 61.1 | \n",
+ " 4.9671 | \n",
+ " 2.0 | \n",
+ " 242.0 | \n",
+ " 17.8 | \n",
+ " 392.83 | \n",
+ " 4.03 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.03237 | \n",
+ " 0.0 | \n",
+ " 2.18 | \n",
+ " 0.0 | \n",
+ " 0.458 | \n",
+ " 6.998 | \n",
+ " 45.8 | \n",
+ " 6.0622 | \n",
+ " 3.0 | \n",
+ " 222.0 | \n",
+ " 18.7 | \n",
+ " 394.63 | \n",
+ " 2.94 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.06905 | \n",
+ " 0.0 | \n",
+ " 2.18 | \n",
+ " 0.0 | \n",
+ " 0.458 | \n",
+ " 7.147 | \n",
+ " 54.2 | \n",
+ " 6.0622 | \n",
+ " 3.0 | \n",
+ " 222.0 | \n",
+ " 18.7 | \n",
+ " 396.90 | \n",
+ " 5.33 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 11
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "boston['MEDV']=df.target\n",
+ "boston.head()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 270
+ },
+ "id": "fs9Y3jHf1OoE",
+ "outputId": "1e1699fa-cf8d-460a-dc60-61df98bc658e"
+ },
+ "execution_count": 13,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \\\n",
+ "0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 \n",
+ "1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 \n",
+ "2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 \n",
+ "3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 \n",
+ "4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 \n",
+ "\n",
+ " PTRATIO B LSTAT MEDV \n",
+ "0 15.3 396.90 4.98 24.0 \n",
+ "1 17.8 396.90 9.14 21.6 \n",
+ "2 17.8 392.83 4.03 34.7 \n",
+ "3 18.7 394.63 2.94 33.4 \n",
+ "4 18.7 396.90 5.33 36.2 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " CRIM | \n",
+ " ZN | \n",
+ " INDUS | \n",
+ " CHAS | \n",
+ " NOX | \n",
+ " RM | \n",
+ " AGE | \n",
+ " DIS | \n",
+ " RAD | \n",
+ " TAX | \n",
+ " PTRATIO | \n",
+ " B | \n",
+ " LSTAT | \n",
+ " MEDV | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.00632 | \n",
+ " 18.0 | \n",
+ " 2.31 | \n",
+ " 0.0 | \n",
+ " 0.538 | \n",
+ " 6.575 | \n",
+ " 65.2 | \n",
+ " 4.0900 | \n",
+ " 1.0 | \n",
+ " 296.0 | \n",
+ " 15.3 | \n",
+ " 396.90 | \n",
+ " 4.98 | \n",
+ " 24.0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.02731 | \n",
+ " 0.0 | \n",
+ " 7.07 | \n",
+ " 0.0 | \n",
+ " 0.469 | \n",
+ " 6.421 | \n",
+ " 78.9 | \n",
+ " 4.9671 | \n",
+ " 2.0 | \n",
+ " 242.0 | \n",
+ " 17.8 | \n",
+ " 396.90 | \n",
+ " 9.14 | \n",
+ " 21.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.02729 | \n",
+ " 0.0 | \n",
+ " 7.07 | \n",
+ " 0.0 | \n",
+ " 0.469 | \n",
+ " 7.185 | \n",
+ " 61.1 | \n",
+ " 4.9671 | \n",
+ " 2.0 | \n",
+ " 242.0 | \n",
+ " 17.8 | \n",
+ " 392.83 | \n",
+ " 4.03 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.03237 | \n",
+ " 0.0 | \n",
+ " 2.18 | \n",
+ " 0.0 | \n",
+ " 0.458 | \n",
+ " 6.998 | \n",
+ " 45.8 | \n",
+ " 6.0622 | \n",
+ " 3.0 | \n",
+ " 222.0 | \n",
+ " 18.7 | \n",
+ " 394.63 | \n",
+ " 2.94 | \n",
+ " 33.4 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.06905 | \n",
+ " 0.0 | \n",
+ " 2.18 | \n",
+ " 0.0 | \n",
+ " 0.458 | \n",
+ " 7.147 | \n",
+ " 54.2 | \n",
+ " 6.0622 | \n",
+ " 3.0 | \n",
+ " 222.0 | \n",
+ " 18.7 | \n",
+ " 396.90 | \n",
+ " 5.33 | \n",
+ " 36.2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 13
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "boston.isnull()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 488
+ },
+ "id": "e9kvXOra2Tjl",
+ "outputId": "44d091e4-25e6-4dd3-83fc-f75a3bd16f4e"
+ },
+ "execution_count": 14,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \\\n",
+ "0 False False False False False False False False False False \n",
+ "1 False False False False False False False False False False \n",
+ "2 False False False False False False False False False False \n",
+ "3 False False False False False False False False False False \n",
+ "4 False False False False False False False False False False \n",
+ ".. ... ... ... ... ... ... ... ... ... ... \n",
+ "501 False False False False False False False False False False \n",
+ "502 False False False False False False False False False False \n",
+ "503 False False False False False False False False False False \n",
+ "504 False False False False False False False False False False \n",
+ "505 False False False False False False False False False False \n",
+ "\n",
+ " PTRATIO B LSTAT MEDV \n",
+ "0 False False False False \n",
+ "1 False False False False \n",
+ "2 False False False False \n",
+ "3 False False False False \n",
+ "4 False False False False \n",
+ ".. ... ... ... ... \n",
+ "501 False False False False \n",
+ "502 False False False False \n",
+ "503 False False False False \n",
+ "504 False False False False \n",
+ "505 False False False False \n",
+ "\n",
+ "[506 rows x 14 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " CRIM | \n",
+ " ZN | \n",
+ " INDUS | \n",
+ " CHAS | \n",
+ " NOX | \n",
+ " RM | \n",
+ " AGE | \n",
+ " DIS | \n",
+ " RAD | \n",
+ " TAX | \n",
+ " PTRATIO | \n",
+ " B | \n",
+ " LSTAT | \n",
+ " MEDV | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 501 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 502 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 503 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 504 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 505 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
506 rows × 14 columns
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 14
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "boston.isnull().sum()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "fxs_L1_H2qOk",
+ "outputId": "1292dad1-b35c-43cb-b1c5-46c24a180dc0"
+ },
+ "execution_count": 15,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "CRIM 0\n",
+ "ZN 0\n",
+ "INDUS 0\n",
+ "CHAS 0\n",
+ "NOX 0\n",
+ "RM 0\n",
+ "AGE 0\n",
+ "DIS 0\n",
+ "RAD 0\n",
+ "TAX 0\n",
+ "PTRATIO 0\n",
+ "B 0\n",
+ "LSTAT 0\n",
+ "MEDV 0\n",
+ "dtype: int64"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 15
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "X = boston.drop('MEDV', axis=1)\n",
+ "Y = boston['MEDV']\n",
+ "X_train,X_test,Y_train,Y_test= train_test_split(X,Y,test_size =0.15, random_state=5)\n",
+ "print(X_train.shape)\n",
+ "print(X_test.shape)\n",
+ "print(Y_train.shape)\n",
+ "print(Y_test.shape)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "fvRAOtIt21Oq",
+ "outputId": "e4c53baa-77e0-436a-dcd5-f944e36e0018"
+ },
+ "execution_count": 18,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "(430, 13)\n",
+ "(76, 13)\n",
+ "(430,)\n",
+ "(76,)\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from sklearn.linear_model import LinearRegression\n",
+ "from sklearn.metrics import mean_squared_error"
+ ],
+ "metadata": {
+ "id": "5gUqttGU5Bhe"
+ },
+ "execution_count": 22,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "lin_model = LinearRegression()\n",
+ "lin_model.fit(X_train, Y_train)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "U1Tsfl995ypK",
+ "outputId": "7a44db4c-4408-4d2c-ada6-0af156ec78dc"
+ },
+ "execution_count": 23,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "LinearRegression()"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 23
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "y_train_predict = lin_model.predict(X_train)\n",
+ "rmse = (np.sqrt(mean_squared_error(Y_train, y_train_predict)))\n",
+ "\n",
+ "print(\"The model performance for training set\")\n",
+ "print('RMSE IS {}'.format(rmse))\n",
+ "print(\"\\n\")\n",
+ "\n",
+ "y_test_predict = lin_model.predict(X_test)\n",
+ "rmse = (np.sqrt(mean_squared_error(Y_test,y_test_predict)))\n",
+ "\n",
+ "print(\"The model performance for testing set\")\n",
+ "print('RMSE is {}'.format(rmse))\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "A9KNyTeS6dOG",
+ "outputId": "54828583-4676-4aed-aa55-68d84fa28dd7"
+ },
+ "execution_count": 27,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "The model performance for training set\n",
+ "RMSE IS 4.710901797319796\n",
+ "\n",
+ "\n",
+ "The model performance for testing set\n",
+ "RMSE is 4.687543527902972\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [],
+ "metadata": {
+ "id": "uHz8EHFK8sEf"
+ },
+ "execution_count": null,
+ "outputs": []
+ }
+ ]
+}
\ No newline at end of file