-
Notifications
You must be signed in to change notification settings - Fork 0
/
expression detector.py
192 lines (148 loc) · 5.61 KB
/
expression detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import tensorflow as tf
import keras
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D
from keras.layers import Dense, Activation, Dropout, Flatten
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt
#------------------------------
#cpu - gpu configuration
config = tf.ConfigProto( device_count = {'GPU': 0 , 'CPU': 56} ) #max: 1 gpu, 56 cpu
sess = tf.Session(config=config)
keras.backend.set_session(sess)
#------------------------------
#variables
num_classes = 7 #angry, disgust, fear, happy, sad, surprise, neutral
batch_size = 256
epochs = 5
#------------------------------
#read kaggle facial expression recognition challenge dataset (fer2013.csv)
#https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge
with open("/data/fer2013/fer2013.csv") as f:
content = f.readlines()
lines = np.array(content)
num_of_instances = lines.size
print("number of instances: ",num_of_instances)
print("instance length: ",len(lines[1].split(",")[1].split(" ")))
#------------------------------
#initialize trainset and test set
x_train, y_train, x_test, y_test = [], [], [], []
#------------------------------
#transfer train and test set data
for i in range(1,num_of_instances):
try:
emotion, img, usage = lines[i].split(",")
val = img.split(" ")
pixels = np.array(val, 'float32')
emotion = keras.utils.to_categorical(emotion, num_classes)
if 'Training' in usage:
y_train.append(emotion)
x_train.append(pixels)
elif 'PublicTest' in usage:
y_test.append(emotion)
x_test.append(pixels)
except:
print("",end="")
#------------------------------
#data transformation for train and test sets
x_train = np.array(x_train, 'float32')
y_train = np.array(y_train, 'float32')
x_test = np.array(x_test, 'float32')
y_test = np.array(y_test, 'float32')
x_train /= 255 #normalize inputs between [0, 1]
x_test /= 255
x_train = x_train.reshape(x_train.shape[0], 48, 48, 1)
x_train = x_train.astype('float32')
x_test = x_test.reshape(x_test.shape[0], 48, 48, 1)
x_test = x_test.astype('float32')
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
#------------------------------
#construct CNN structure
model = Sequential()
#1st convolution layer
model.add(Conv2D(64, (5, 5), activation='relu', input_shape=(48,48,1)))
model.add(MaxPooling2D(pool_size=(5,5), strides=(2, 2)))
#2nd convolution layer
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(AveragePooling2D(pool_size=(3,3), strides=(2, 2)))
#3rd convolution layer
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(AveragePooling2D(pool_size=(3,3), strides=(2, 2)))
model.add(Flatten())
#fully connected neural networks
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))
#------------------------------
#batch process
gen = ImageDataGenerator()
train_generator = gen.flow(x_train, y_train, batch_size=batch_size)
#------------------------------
model.compile(loss='categorical_crossentropy'
, optimizer=keras.optimizers.Adam()
, metrics=['accuracy']
)
#------------------------------
fit = True
if fit == True:
#model.fit_generator(x_train, y_train, epochs=epochs) #train for all trainset
model.fit_generator(train_generator, steps_per_epoch=batch_size, epochs=epochs) #train for randomly selected one
else:
model.load_weights('/data/facial_expression_model_weights.h5') #load weights
#------------------------------
"""
#overall evaluation
score = model.evaluate(x_test, y_test)
print('Test loss:', score[0])
print('Test accuracy:', 100*score[1])
"""
#------------------------------
#function for drawing bar chart for emotion preditions
def emotion_analysis(emotions):
objects = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral')
y_pos = np.arange(len(objects))
plt.bar(y_pos, emotions, align='center', alpha=0.5)
plt.xticks(y_pos, objects)
plt.ylabel('percentage')
plt.title('emotion')
plt.show()
#------------------------------
monitor_testset_results = False
if monitor_testset_results == True:
#make predictions for test set
predictions = model.predict(x_test)
index = 0
for i in predictions:
if index < 30 and index >= 20:
#print(i) #predicted scores
#print(y_test[index]) #actual scores
testing_img = np.array(x_test[index], 'float32')
testing_img = testing_img.reshape([48, 48]);
plt.gray()
plt.imshow(testing_img)
plt.show()
print(i)
emotion_analysis(i)
print("----------------------------------------------")
index = index + 1
#------------------------------
#make prediction for custom image out of test set
img = image.load_img(r"C:\Users\Dell\Desktop\personal_docs\dev_docs\dev_pic.jpg", grayscale=True, target_size=(48, 48))
x = image.img_to_array(img)
x = np.expand_dims(x, axis = 0)
x /= 255
custom = model.predict(x)
emotion_analysis(custom[0])
x = np.array(x, 'float32')
x = x.reshape([48, 48])
plt.gray()
plt.imshow(x)
plt.show()
#------------------------------