In our paper, we conduct experiments on three common-used datasets, including Ref-COCO, Ref-COCO+ and G-Ref.
The data could be found at here. Please run the following commands to download.
# download
mkdir datasets && cd datasets
wget http://images.cocodataset.org/zips/train2014.zip
# unzip
unzip train2014.zip -d images/ && rm train2014.zip
The data could be found at here. Please run the following commands to download and convert.
# download
wget https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip
# unzip
unzip refcoco.zip && rm refcoco.zip
# convert
python ../tools/data_process.py --data_root . --output_dir . --dataset refcoco --split unc --generate_mask
# lmdb
python ../tools/folder2lmdb.py -j anns/refcoco/train.json -i images/train2014/ -m masks/refcoco -o lmdb/refcoco
python ../tools/folder2lmdb.py -j anns/refcoco/val.json -i images/train2014/ -m masks/refcoco -o lmdb/refcoco
python ../tools/folder2lmdb.py -j anns/refcoco/testA.json -i images/train2014/ -m masks/refcoco -o lmdb/refcoco
python ../tools/folder2lmdb.py -j anns/refcoco/testB.json -i images/train2014/ -m masks/refcoco -o lmdb/refcoco
# clean
rm -r refcoco
The data could be found at here. Please run the following commands to download and convert.
# download
wget https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip
# unzip
unzip refcoco+.zip && rm refcoco+.zip
# convert
python ../tools/data_process.py --data_root . --output_dir . --dataset refcoco+ --split unc --generate_mask
# lmdb
python ../tools/folder2lmdb.py -j anns/refcoco+/train.json -i images/train2014/ -m masks/refcoco+ -o lmdb/refcoco+
python ../tools/folder2lmdb.py -j anns/refcoco+/val.json -i images/train2014/ -m masks/refcoco+ -o lmdb/refcoco+
python ../tools/folder2lmdb.py -j anns/refcoco+/testA.json -i images/train2014/ -m masks/refcoco+ -o lmdb/refcoco+
python ../tools/folder2lmdb.py -j anns/refcoco+/testB.json -i images/train2014/ -m masks/refcoco+ -o lmdb/refcoco+
# clean
rm -r refcoco+
The data could be found at here. Please run the following commands to download and convert. (Note that we adopt two different splits of this dataset, 'umd' and 'google'.)
# download
wget https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip
# unzip
unzip refcocog.zip && rm refcocog.zip
# convert
python ../tools/data_process.py --data_root . --output_dir . --dataset refcocog --split umd --generate_mask # umd split
mv anns/refcocog anns/refcocog_u
mv masks/refcocog masks/refcocog_u
python ../tools/data_process.py --data_root . --output_dir . --dataset refcocog --split google --generate_mask # google split
mv anns/refcocog anns/refcocog_g
mv masks/refcocog masks/refcocog_g
# lmdb
python ../tools/folder2lmdb.py -j anns/refcocog_u/train.json -i images/train2014/ -m masks/refcocog_u -o lmdb/refcocog_u
python ../tools/folder2lmdb.py -j anns/refcocog_u/val.json -i images/train2014/ -m masks/refcocog_u -o lmdb/refcocog_u
python ../tools/folder2lmdb.py -j anns/refcocog_u/test.json -i images/train2014/ -m masks/refcocog_u -o lmdb/refcocog_u
python ../tools/folder2lmdb.py -j anns/refcocog_g/train.json -i images/train2014/ -m masks/refcocog_g -o lmdb/refcocog_g
python ../tools/folder2lmdb.py -j anns/refcocog_g/val.json -i images/train2014/ -m masks/refcocog_g -o lmdb/refcocog_g
rm -r refcocog
After the above-mentioned commands, the strutre of the dataset folder should be like:
datasets
├── anns
│ ├── refcoco
│ │ ├── xxx.json
│ ├── refcoco+
│ │ ├── xxx.json
│ ├── refcocog_g
│ │ ├── xxx.json
│ ├── refcocog_u
│ │ ├── xxx.json
├── images
│ ├── train2014
│ │ ├── xxx.jpg
├── lmdb
│ ├── refcoco
│ │ ├── xxx.lmdb
│ │ ├── xxx.lmdb-lock
│ ├── refcoco+
│ │ ├── xxx.lmdb
│ │ ├── xxx.lmdb-lock
│ ├── refcocog_g
│ │ ├── xxx.lmdb
│ │ ├── xxx.lmdb-lock
│ ├── refcocog_u
│ │ ├── xxx.lmdb
│ │ ├── xxx.lmdb-lock
├── masks
│ ├── refcoco
│ │ ├── xxx.png
│ ├── refcoco+
│ │ ├── xxx.png
│ ├── refcocog_g
│ │ ├── xxx.png
│ ├── refcocog_u
│ │ ├── xxx.png