From af76ac5df3d84aaa3e6e38995adbeaf36919632e Mon Sep 17 00:00:00 2001 From: Dengyu Wu Date: Sat, 29 Jun 2024 00:31:23 +0800 Subject: [PATCH] doc: doc update --- docs/cutoff/topk.md | 23 +++++++---------------- 1 file changed, 7 insertions(+), 16 deletions(-) diff --git a/docs/cutoff/topk.md b/docs/cutoff/topk.md index d93f05f..a0342a8 100644 --- a/docs/cutoff/topk.md +++ b/docs/cutoff/topk.md @@ -2,36 +2,27 @@ ## Optimal Cutoff Timestep (OCT) -$$ -\begin{align} +\begin{equation} g(\boldsymbol{X}) = \arg\min_{\hat{t}}\{ \forall \hat{t}_1 > \hat{t}: \mathbf{1}(f(\boldsymbol{X}[\hat{t}_1])= \boldsymbol{y})\} -\end{align} -$$ +\end{equation} ## Top-K Gap for Cutoff Approximation The defination of $Top_k(\boldsymbol{Y}(t))$ as the top-$k$ output occurring in one neuron of the output layer, -$$ -\begin{align} +\begin{equation} Y_{gap}= Top_1(\boldsymbol{Y}(t)) - Top_2(\boldsymbol{Y}(t)), -\end{align} -$$ +\end{equation} which denotes the gap of top-1 and top-2 values of output $\boldsymbol{Y}(t)$. Then, we let $ D\{\cdot\}$ denote the inputs in subset of $D$ that satisfy a certain condition. Now, we can define the confidence rate as follows: -$$ -\begin{align} +\begin{equation} \textit{Confidence rate: } C(\hat{t}, D\{Y_{gap}>\beta\}) = \frac{1}{|D\{Y_{gap}>\beta\}|}\sum_{\boldsymbol{X}\in D\{Y_{gap}>\beta\}} (g(\boldsymbol{X}) \leq \hat{t}), -\end{align} -$$ +\end{equation} The algorithm searches for a minimum $\beta \in \mathbb{R^+}$ at a specific $\hat t$, as expressed in the following optimization objective: -$$ -\begin{align} +\begin{equation} \arg\min_{\beta} C(\hat t, D\{Y_{gap} > \beta\}) \geq 1-\epsilon, -\end{align} -$$ where $\epsilon$ is a pre-specified constant such that $1-\epsilon$ represents an acceptable level of confidence for activating cutoff, and a set of $\beta$ is extracted under different $\hat t$ using training samples.