-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrainer.py
135 lines (115 loc) · 4.91 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author : Dengpan Fu ([email protected])
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import time
from torch.nn import functional as F
from utils import AverageMeter
class Trainer(object):
""" Trainer to train adversarial attacting model """
def __init__(self, model, attack, optimizer, summary_writer=None,
print_freq=1, output_freq=1, is_cuda=True, base_lr=0.001,
max_epoch=100, steps=[], rate=1.):
super(Trainer, self).__init__()
self.model = model
self.attack = attack
self.optimizer = optimizer
self.summary_writer = summary_writer
self.iter = 0
self.print_freq = print_freq
self.output_freq = output_freq
self.is_cuda = is_cuda
self.base_lr = base_lr
self.max_epoch = max_epoch
self.steps = steps
self.rate = rate
self.get_lr_mults()
def train(self, epoch, data_loader):
self.model.train()
batch_time = AverageMeter()
adv_time = AverageMeter()
loss_meter = AverageMeter()
adv_loss_meter = AverageMeter()
acc_meter = AverageMeter()
adv_acc_meter = AverageMeter()
self.decrease_lr(epoch)
end = time.time()
for i, data in enumerate(data_loader):
x, y = data
if self.is_cuda:
x = x.cuda()
y = y.cuda()
# Compute Adversarial Perturbations
t0 = time.time()
x_adv = self.attack(x, y)
adv_time.update(time.time() - t0)
t0 = time.time()
adv_pred = self.model(x_adv)
adv_loss = F.cross_entropy(adv_pred, y)
self.optimizer.zero_grad()
adv_loss.backward()
self.optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
adv_loss_meter.update(adv_loss.item())
adv_acc = self.accuracy(adv_pred, y)
adv_acc_meter.update(adv_acc[0].item())
if self.summary_writer is not None:
self.summary_writer.add_scalar('adv_loss_iter', adv_loss_meter.val, self.iter)
self.summary_writer.add_scalar('adv_acc_iter', adv_acc_meter.val, self.iter)
if (i + 1) % self.output_freq == 0:
pred = self.model(x)
loss = F.cross_entropy(pred, y)
loss_meter.update(loss.item())
acc = self.accuracy(pred, y)
acc_meter.update(acc[0].item())
if self.summary_writer is not None:
self.summary_writer.add_scalar('loss_iter', loss_meter.val, self.iter)
self.summary_writer.add_scalar('acc_iter', acc_meter.val, self.iter)
if (i + 1) % self.print_freq == 0:
p_str = "Epoch:[{:>3d}][{:>3d}|{:>3d}] Time:[{:.3f}/{:.3f}] " \
"Loss:[{:.3f}/{:.3f}] AdvLoss:[{:.3f}/{:.3f}] " \
"Acc:[{:.3f}/{:.3f}] AdvAcc:[{:.3f}/{:.3f}] ".format(
epoch, i + 1, len(data_loader), batch_time.val,
adv_time.val, loss_meter.val, loss_meter.avg,
adv_loss_meter.val, adv_loss_meter.avg, acc_meter.val,
acc_meter.avg, adv_acc_meter.val, adv_acc_meter.avg)
print(p_str)
self.iter += 1
if self.summary_writer is not None:
self.summary_writer.add_scalar('loss_epoch', loss_meter.avg, epoch)
self.summary_writer.add_scalar('adv_loss_epoch', adv_loss_meter.avg, epoch)
self.summary_writer.add_scalar('acc_epoch', acc_meter.avg, epoch)
self.summary_writer.add_scalar('adv_acc_epoch', adv_acc_meter.avg, epoch)
@staticmethod
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
ret = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
ret.append(correct_k.mul_(1. / batch_size))
return ret
def reset(self):
self.iter = 0
def close(self):
self.iter = 0
if self.summary_writer is not None:
self.summary_writer.close()
def decrease_lr(self, epoch):
lr_mult = self.lr_mults[epoch]
for g in self.optimizer.param_groups:
g['lr'] = lr_mult * self.base_lr * g.get('lr_mult', 1.0)
def get_lr_mults(self):
self.lr_mults = np.ones(self.max_epoch)
self.steps = sorted(filter(lambda x: 0<x<self.max_epoch, self.steps))
if len(self.steps) > 0 and 0 < self.rate < 1.:
for step in self.steps:
self.lr_mults[step:] *= self.rate